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SIRIUS A GENERAL RELATIVITY - PRACTICE SESSION 29-10-2025

Practice session: General Relativity

Kapteyn Learning Community Sirius A
Give motivations and/or derivations for your answers.

1. A torus in two-dimensional Euclidean space

Consider the metric
ds* = (b+ asin ¢)?db? + a*d¢? (1)

Which describes a torus in 2D Euclidean space in the spherical coordinate system (6, ¢), where a
and b are the torus radius and the radius of its section respectively.

(a) Derive the equations of motion for this metric for coordinate 6, using the Lagrangian.
(b) Read of the non-zero Christoffel symbols from your equations of motion derived in (a), using
the formula
d?x dxP dx
— 3, —— =0. 2
dr? s dr dr 2)
(¢) Also derive/compute all (consider both 6§ and ¢) the non-zero Christoffel symbols ‘by hand’
using the formula

s _1(09ap | 990y 0Ogpy
gasTlgy = 2\ Oz + oxf Oz~ )’ (3)
Solution:
(a) First the Lagrangian needs to be written down
2
L’:,/—gw,xﬂx’/—\l (b+ asin ¢)? (d9> +a? (?) ] (4)
do o
Subsequently, the equations of motion in 6 can be derived,
oL

20 =" ()

oL 1 9 do o (do\?
9% 2L op [ (b+ asin ¢)? <d0> a <da) (6)

1 5 db
= —i2(b+abln¢) e (7)
de
= —(b+ asing)*— (8)
dr
9)
Now the equation of motion looks as follows,
d (0L oL
R adgy 10
i (5) a0
d . a0df
. (—(b+a51n¢) 7') =0 (11)
—(b+ asin¢)?0 — (b+ asin @) - 2acosdpp = 0 (12)
.. 2a cos qb

0+ ——¢f =0. 13
g ¢¢ (13)
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(b) Looking at the equation of motion in (a), the non-zero Christoffel symbols are,

o 1 2acos¢  acos¢

=_. = ) 14
9 792 b4asing b+asing (14)

(c) Let’s first consider the metric and its inverse. The metric is symmetric and can therefore
trivially be inverted as follows

(900 906\ _ [(b+asing)®* 0 o (b+asing)™2 0
e = <9¢9 9¢¢> - ( 0 a2) 70T 0 ) W

The derivatives of the metric w.r.t. the coordinates are then,

8ng

=0 (16)

8g v b+asm¢) cosgp 0
“ ( 0) (17)
(18)

Noting that we only have two coordinates and the metric is diagonal, we get the following
non-zero Christoffel symbols from the definition,

1 9905 , 090y 0Oy
06 _ 106 _ 0 B v Y
Ty =Too = 29 (83:7 + oz Oxb (19)
1 99 Ogoe
[ 200 2
29" 06 (20)
1 1
_ . __ .9 i 21
> hTasng)? a(b + asin ¢) cos ¢ (21)
a cos ¢
_ 22
b+ asin ¢ (22)
1 g 0 0
¢ _1d _ 994 9p
Fg, =Tge = 9¢¢ (/5% jﬁ/ 6x;/) (23)
1 9960
_ b . 24
39" %55 (24)
1 1 .
:—i-ﬁﬂa(l)—&—asmwcosqﬁ (25)
_ (bt+asing)cos¢ (26)
a
(27)
2. Geometry of de Sitter space
Consider the metric,
ds? = (1 —rH)dt?* — (1 —r?)"tdr? — r2(d6? + sin® Hdp?) (28)

which is a solution of Einstein equation with positive cosmological constant (de Sitter spacetime).

(a) Consider a massive particle undergoing inertial motion in this metric and derive its equations
of motion.

(b) From this point on, we will be mostly concerned with motion in the (¢,7) coordinates, so in
what follows you can assume that the coordinates 6, ¢ always remain fixed. Show that a particle
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initially placed at the origin (i.e. r|i—o = 0) with zero velocity (i.e. with 47|,—o = 0 will always
stay there.

(c) Show that particles away from r = 0 feel a force towards larger values of, r, and will thus move
towards the surface r = 1. On the surface, r = 1 the metric has a (coordinate) singularity. This
surface is called the de Sitter horizon.

(d) Write an expression for the proper distance from r = 0 to the de Sitter horizon, and show that
it is finite.

(e) Consider a light ray emitted from r = 0 towards the de Sitter horizon. Calculate its orbit and
show that in the (¢,7) coordinates the light ray never crosses the horizon.

(f) As in the case of the Schwarzschild black hole, this is somewhat misleading. Define the analogue
of Eddington Finkelstein coordinates ¢, v, in which the outgoing light rays (i.e. those moving
towards large values of 7) move along straight lines ¢ — r = constant.

(g) write the metric (28) in these new coordinates and show that it is smooth at r = 1 and can be
extended past this surface to r > 1.

(h) Analyze the causal structure of the metric (28). This means, calculate the form of the in- and

out-going lightcones, draw a spacetime diagram in the £, r coordinates and plot qualitatively
the form of the lightcones for ingoing (moving towards smaller r) and outgoing (moving towards
larger r) lightrays.
From this diagram, argue that the surface r = 1 does indeed act like a horizon, that is, any
object which starts in the region r < 1 and then crosses the surface r = 1 towards r > 1, will
never be able to come back to the region r < 1. From the persepctive of an observer sitting at
r = 0 this object is forever lost behind the de Sitter horizon.

Solution:

(a) In this case, the Lagrangian is given by:

L= /=g iriv (29)

— _[(1_T2)(£>2_(1_T2)1 <E§;>2—r2<<$)2+sin29<f£>2>1. (30)

If we optimize the Lagrangian only in ¢ we obtain:

or _
ot

% :% - [(1 —2) (;i)Q —(1—r2)-1 (3;)2 —r2 <<g§)2+sin29 <:1lf>2>]

(32)
10 dt\? L (dr\? do\? o, (do\?
"2z ‘[“""2) () -0-"7(3) ‘”((w) a0 (52) )H
1 o di
=5z 2y (34)
do 9y dt
- —(1- &j{ =k, (36)

_ dar f— dt
where £ = 97 and t = .
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This means that we obtain for a massive particle:

gttt =u-u=-1 (37)
22
(1 — 2)§2 =1 38
(=) (39)
-(1- 2)2i2+f2 =1-7r? (39)
k2 =17 (40)
in which we were so generous to redefine the constant k. Also note for @ - % = —1, ds®> =

—dr2.

From the initial condition r(0) = 79 = 0 and #(0) = 0. We see that k? = 1 and the equation
of motion for r becomes,

Were we use the initial condition that ro = 0. This means that the particle at rest will stay
at rest at r = 0.

For ro # 0 (but small) we can use (1) = roe” to show that r grows exponential with 7.
However in this approximation nothing special happens when we approach the horizon at
r=1.

The proper distance from r = 0 to the horizon is given by:

1
=arcsin| = g (43)

1
L*/ dr
70 V1—r2 0

If we want to calculate something for a light-ray we don’t use a proper-time constraints,
but use the metric and the property that ds?> = 0 for light, radial motion so we have
d¢ = df =0, so ds = 0 holds,

dr?
(1—7r2)2"

dt? = (44)

Integrate:

dr
1-—

[

/kl—r1+r) (46)
/2 <1+r 1ir)’ (47)
(i)

For a light ray emitted at ¢t = 0, » = 0, the integration constant disappears. For small r we

find:
1 1+r
—1 =T 4
2 n(l—r) " (49)
And hence t ~ r.

As r approaches the horizon, r — 1, and the denominator in the logarithm blows up,

t+C = (45)
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sot — oo as r — 1. See the image which is shown below for a complete overview:

— N
(LS
L \_\“;4 hordv

| | v

(f) Now we look for new coordinates, especially a new time coordinate ¢ such that the equation

of motion for an outgoing light ray is ¢ — r = const.. We modify the expression of (e):

1 1
t—2ln<1i—:) = const.,

So this means that:

and

(g) To write the metric in these coordinates we need,

g—dff-l-i - —|—lln L
dr — dr  dr " 2 1—r ’

dt  dr 1d

=E—E-|-§E(ln(1—l-r)—ln(l—r))7
_dt dr 1 1 dr 1 dr
deTU(HrdTH_TdT)’
_dt_dr<1_1)
dr dr \1-—1r2 ’
_dt r?2 dr
T tioea
So this means that:
_ r2
dt =dt + dr.

1—1r2

(50)

(51)

(52)

(59)
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For this exercise we ignore the 6 and ¢ part, because it remains the same. If we rewrite the
metric we obtain:

ds? = (1 —r?)dt? — (1 —r?)~'dr?, (60)
2 2
=(1-7? <dt—|— I d 2dr) — (1 —rH~tdr? (61)
— T
4
— 2\ 372 237 r 2 2

= (1—r*)dt +2r dtdr+1_r2dr 71_102dr7 (62)

4 _
= (1 — r?)dE? + 2r%dEdr + ; — (63)
= (1 —r?)dt? + 2r’dtdr — (1 + r?)dr?. (64)

Using the fact that —(1 — r2)(1+172) =% — 1.
This result means the metric is smooth everywhere and can be extended beyond r = 1.

We are now going to investigate the propagation of all light rays moving in radial direction.
So we solve:

ds® =(1 — r?)dt? + 2r3dtdr — (1 + r?)dr®. (65)
. . . . dt — y.
Deviding by dr? yields a quadratic equation for d—ﬁ =X\
(1—=7r)A2 +2r°) — (1 — %) = 0. (66)

So there are two solutions:

=2 At 4 (1= r2) - —(1+1?)

A\ =
2(1 —r?) ’ (67)
—2r2 ++/4
- M’ (68)
2(1 —12)
—r?2+1
i (69)
This means the solutions are given by:
>‘+ = 17 (70)
1472
A =———. 71
1 _ 7,2 ( )

The result is that the outgoing angle is precisely 45 degrees. For the negative solution we
have a different result that implies that for small » we have an angle of minus 45 degrees.

However we not that as r — 1, A_ diverges and for r > 1 it even becomes positive, ingoing
and outgoing light rays start to travel in the same direction. This means once a particle
has crossed the horizon at » = 1 it has to stay within the light cone preventing it from
returning to values r < 1.
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3. Expanding flat universe

Consider the following metric describing an expanding flat Universe,

—_~
o T
Nat?

ds? = dt? — a(t)?*(dz? + dy? + d2?). (72)

) Compute the Christoffel symbols in terms of a(t).

Derive the equations of motion for massive particles moving inertially in this spacetime

) Check that the orbits {x(t), y(t), z(t)} = constant, correspond to inertial motion.

From this point on, we focus on the specific case of an inflating Universe where,

a(t) = exp <\/§t> (73)

A light ray is emitted from the point {t, x, y, z} = {¢o , 0, 0, 0} towards positive values of x.
What is the orbit that the light ray will follow?

) Find the maximum value of the coordinate x that the light ray described above can reach.

Using the metric compute the physical spacelike distance along the slice ¢t = tg corresponding
to the coordinate distance in x that you found in e).

Solution:

(a) So we consider the following metric:

ds? = dt? — a(t)?(d2? + dy? + d2?). (74)
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This gives a Lagrangian given by:
dat\* dz\>  [(dy\® [dz\’
S R I L T 2 & hat) &<
J () o (2 (2 (&)
This mean we obtain for t:
oL 1 0 dt\? o (dx\?  (dy\®  [(dz\?
o 2L H(da) o ((da) (i) + (%) o
1 oa dz\? dy 2 dz\>
Oa dr\? dy 2 dz\ >
o (&) ()« (2)) ™
%_ig_ ﬁz_(y dﬁ2+ @2 @2 (79)
ot 2L 0t do do do do
1 _dt
dt

where £ = <%,
This leads to the following Lagrange equation and means that the Christoffel symbols
become:

g (0L oL
0 dt Oaf(t) dz\” dy\* dz\’ B
or ( m) SR ((w) * <dT &) )70 (83)
d?t da dz\? dy 2 dz\?
ozt ((dr) + (m) + <dT> =0 (84)
da
rt,=r,, =T = s (85)
Now let’s consider x or a cyclic perturbation of x, y, z:
oL
o 0, (86)
oL 1 0 dt \? o (dz\®  [dy\® [dz\’
08 " 200 [‘ [(da) o ((da) “(ir) + (%) 0
1 9, dx
2L ®) 2d0 (88)
= a(t)Qd—I (89)
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The Lagrange equation can then be solved to obtain the Christoffel symbols,

d [(dL oL
e (m) ~ 2z =0 (%0)
d odr\
da(t) dt dz N
20003 grar oW gz =0 (92)

d*x 2 Oa dt dx
T S 93
dr? + a(t) Ot dr dr (93)

This implies that:
10a

Iy = th =I7% = oot (94)
Mind the factor 2, due to symmetry.
(b) For a massive particle we know that:
1 =14 —a(t)*(@ +9° + ). (95)
From the previous subproblem (a) we know that:
201 = k. (96)
Because of symmetry this means that we have:
k
- 7
R YCR (97)
l
b 9
Y= 92 (98)
. m
z= 242’ (99)
This means that the equation for a massive particle becomes:
. 1
) 2, 2 2
1= =5 (K +0+m?). (100)
This can be rewritten as:
. 1
2 _ 2, 72 2
t71+@(k + 12+ m?). (101)
(¢c) If we have {x(t), y(t), z(t) } = constant, this means that:
Or Oz Ot ot
— 22 0. — =0. 102
or Otor or (102)

The same is valid for the cyclic permutable coordinates. so & = y = Z = 0. This gives that
the equations of motion give:

t=i=§=2=0. (103)
So there is inertial motion.

(d) For now we assume:

a(t) = exp ( 3t> (104)
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A light ray so that means that g,, &% = 0, this gives:
2 A 2
0 =dt* —exp gt dx=, (105)
2 A 2
dt” = exp gt dx*, (106)
1 /A
dx = ——y\/=t]dt 1
x exp( 2\/3> , (107)
e L At
N I
(t) Vs (108)
z(t) = — +C 108
1/4
2V 3

Now we want to do set boundary conditions: ¢ = ¢y, z(tp) = 0, this means the constant

becomes:

This means the equation for z(t) becomes:

o(205) oo (345)

#{t) = 1 /A

1
2V 3 2V 3

S48 (4)

(e) For this we take t — oo, which gives:

i )2 e (1
tg&x()— AP {5\ 3t

(f) We take a slice in time, t = to, this means that dt = 0, and the metric becomes:

ds? = a?dx?,
ds = adx,

s = a(to)xmax(t())v

(109)

(110)

(111)

(112)

(113)
(114)
(115)

(116)

(117)

. General to Special Relativity
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Assuming a general coordinate transformation, the components of vector fields a and b transform

as follows: ) 5
ox'™ ox
loe B /o
* = WG ) by = Wbﬁv (118)
(a) Show that the components of a metric tensor transform under general coordinate transforma-
tions as: s
0x" Ox
! —
gaﬂ(x) = wm%é(@") (119)
(b) Show that the scalar product between two vector fields:
(@) - w(x) = gap(@)o* (2)w’ (2) (120)
is invariant under the general coordinate transformations.
(c) Show that under a general coordinate transformation (z'® = (A=1)* z2”), where A~! is a
constant invertable matrix, the components of vector field b transform as:
v, = Abs (121)

(d) Now consider a local inertial frame at a Point P where gog = 103 and the first derivative of gag
vanishes. Using eq. (119), show that the components of the Minkowski spacetime metric 1,z
are invariant under general coordinate transformations (as defined in the previous subquestion).
In other words, show that the conditions for which n/, 5 = Nlap are given by:

(AT)(A) =15 where (AT)g =7"ngsA? (122)

Solution:

(a) The metric tensor components can be written as the product of 2 vectors:

) (123)

Now substituting the expression for a general coordinate transformation gives:

ox"  0xf
ozY 9xd
= o sasbs (125)
0% 8
027 Oz (126)

= 0o 98I

(b) Take the scalar product definition and fill in the transformation equations previously spec-
ified in the question.

V' (2) - w'(z) = ghg ()0 (2)w' (2) (127)
oz Ox® oxr'™  ox'P

= 9/ 9P 974 (%) oz " Oxin g (128)

= 6)60,gysa” b (129)

= g,5a"0° (130)

= a(z) - b(z) (131)

So yes, the scalar product between two vector fields in invariant under the general coordinate
transformations.
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(c) Start with the general coordinate transformation:
2 = (A7) pal (132)
Then multiply both sides by A?.
Az’ = A% (A1) gaf (133)
= 052" (134)
= a0 (135)
We can also write this as follows (to be consistent with the notation of the question.
Oz
B — a — AB
We can substitute this in the transformation of a vector field to get the final solution:
Oz
b, = b 137
o = g8 (137)
= APbg (138)
(d) We can rewrite eq. (119) using eq. (121), and set gop = 7a3, Which gives:
N = ALAGN.s (139)
Then multiply this expression by n°*
85 = 1N ALAG (140)
Additionally, we know that:
Nag = Mag = @abl (141)
= AZA%a,bs (142)
= AJA%nys (143)
or equivalently, (AT)§ = nmnngg‘A%
Substituting this in eq. (140) gives
55 = (AT) sA) = 15 (144)
QED
5. Einstein & Riemann
(a) Show that Einstein’s equations,
1
R, — §gWR =81GT,,, (145)
can also be written as,
T
R,ul/ =8r(F TF“/ + mguy 5 (146)

in which D is the dimension of space time.
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(b) How many independent components does the Riemann tensor have in 2 dimensions?!

Solution:

()

1
R, — §g,“,R =8rGT,,, (147)
1
9" Ry, — §g’“’gm,R =8nGT,.,g"", (148)
D
R - §R = &7GT, (149)
D
R (1 - 2> = 8&7GT, (150)
8nGT
=7 (151)
2

where D = g"¥g,,,,.
Now substituting back into Einstein’s equations,

1

Ry = 87GT0, + 59, R, (152)
1 8rGT
= 87GT,, + 5gJWW—D, (153)
-2
T
=81 (Tl“’ + Mg;,,,,) . (154)

(b) This exercise is a common exercise which need to be fluent by the student. Best to approach

this problem is by writing all possibilities as counting in binary:

Ri111 Risnn Roinn Reon

Ri112 Ris12 Roiiz Raoio

Ri121 Riso1 Roiz1 Room

Ri122 Rizaa  Roi2a Raooo
We know that the metric is antisymmetric in the first two indices and the last two indices,
this means that the following become zero:

R Rror Rorr R

Rrrrr Rizie Rone  Roore

Rrror Rizor Roio1r Rooor

1) 1)
T T T 0T Eag

These four remaining Riemann tensor components can therefore be related using the anti-
symmetric properties as:

Ri212 = Ro121 = —Ri221 = —Ro112 (155)

So this mean there is only 1 independent component. The number of independent compo-
nents can also be found using;:

IC = 1—12N2(N2 —1) (156)

1Show explicitly that there are that amount of independent components.



