

Practice session: General Relativity

Kapteyn Learning Community Sirius A Give motivations and/or derivations for your answers.

1. A torus in two-dimensional Euclidean space

Consider the metric

$$ds^2 = (b + a\sin\phi)^2 d\theta^2 + a^2 d\phi^2 \tag{1}$$

Which describes a torus in 2D Euclidean space in the spherical coordinate system (θ, ϕ) , where a and b are the torus radius and the radius of its section respectively.

- (a) Derive the equations of motion for this metric for coordinate θ , using the Lagrangian.
- (b) Read of the non-zero Christoffel symbols from your equations of motion derived in (a), using the formula

$$\frac{d^2x^{\alpha}}{d\tau^2} + \Gamma^{\alpha}_{\beta\gamma}\frac{dx^{\beta}}{d\tau}\frac{dx^{\gamma}}{d\tau} = 0.$$
 (2)

(c) Also derive/compute all (consider both θ and ϕ) the non-zero Christoffel symbols 'by hand' using the formula

$$g_{\alpha\delta}\Gamma^{\delta}_{\beta\gamma} = \frac{1}{2} \left(\frac{\partial g_{\alpha\beta}}{\partial x^{\gamma}} + \frac{\partial g_{\alpha\gamma}}{\partial x^{\beta}} - \frac{\partial g_{\beta\gamma}}{\partial x^{\alpha}} \right). \tag{3}$$

Solution:

(a) First the Lagrangian needs to be written down

$$\mathcal{L} = \sqrt{-g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}} = \sqrt{-\left[(b + a\sin\phi)^2 \left(\frac{d\theta}{d\sigma}\right)^2 + a^2 \left(\frac{d\phi}{d\sigma}\right)^2\right]}.$$
 (4)

Subsequently, the equations of motion in θ can be derived,

$$\frac{\partial \mathcal{L}}{\partial \theta} = 0 \tag{5}$$

$$\frac{\partial \mathcal{L}}{\partial \dot{\theta}} = \frac{1}{2\mathcal{L}} \frac{\partial}{\partial \dot{\theta}} \left[-\left[(b + a \sin \phi)^2 \left(\frac{d\theta}{d\sigma} \right)^2 + a^2 \left(\frac{d\phi}{d\sigma} \right)^2 \right] \right]$$
 (6)

$$= -\frac{1}{2\mathcal{L}}2(b+a\sin\phi)^2\frac{d\theta}{d\sigma} \tag{7}$$

$$= -(b + a\sin\phi)^2 \frac{d\theta}{d\tau} \tag{8}$$

(9)

Now the equation of motion looks as follows,

$$\frac{d}{d\tau} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right) - \frac{\partial \mathcal{L}}{\partial \theta} = 0 \tag{10}$$

$$\frac{d}{d\tau} \left(-(b + a\sin\phi)^2 \frac{d\theta}{d\tau} \right) = 0 \tag{11}$$

$$-(b+a\sin\phi)^2\ddot{\theta} - (b+a\sin\phi)\dot{\theta} \cdot 2a\cos\phi\,\dot{\phi} = 0 \tag{12}$$

$$\ddot{\theta} + \frac{2a\cos\phi}{b + a\sin\phi}\dot{\phi}\dot{\theta} = 0. \tag{13}$$

(b) Looking at the equation of motion in (a), the non-zero Christoffel symbols are,

$$\Gamma^{\theta}_{\theta\phi} = \frac{1}{2} \cdot \frac{2a\cos\phi}{b + a\sin\phi} = \frac{a\cos\phi}{b + a\sin\phi}.$$
 (14)

(c) Let's first consider the metric and its inverse. The metric is symmetric and can therefore trivially be inverted as follows

$$g_{\mu\nu} = \begin{pmatrix} g_{\theta\theta} & g_{\theta\phi} \\ g_{\phi\theta} & g_{\phi\phi} \end{pmatrix} = \begin{pmatrix} (b+a\sin\phi)^2 & 0 \\ 0 & a^2 \end{pmatrix} \Longrightarrow g^{\mu\nu} = \begin{pmatrix} (b+a\sin\phi)^{-2} & 0 \\ 0 & a^{-2} \end{pmatrix}$$
(15)

The derivatives of the metric w.r.t. the coordinates are then,

$$\frac{\partial g_{\mu\nu}}{\partial \theta} = 0 \tag{16}$$

$$\frac{\partial g_{\mu\nu}}{\partial \phi} = \begin{pmatrix} 2a(b+a\sin\phi)\cos\phi & 0\\ 0 & 0 \end{pmatrix} \tag{17}$$

(18)

Noting that we only have two coordinates and the metric is diagonal, we get the following non-zero Christoffel symbols from the definition,

$$\Gamma^{\theta}_{\beta\gamma} = \Gamma^{\theta}_{\theta\phi} = \frac{1}{2}g^{\theta\theta} \left(\frac{\partial g_{\theta\beta}}{\partial x^{\gamma}} + \frac{\partial g_{\theta\gamma}}{\partial x^{\beta}} - \frac{\partial g_{\beta\gamma}}{\partial x^{\theta}} \right)$$
(19)

$$=\frac{1}{2}g^{\theta\theta}\cdot\frac{\partial g_{\theta\theta}}{\partial\phi}\tag{20}$$

$$= \frac{1}{2} \cdot \frac{1}{(b+a\sin\phi)^2} \cdot 2a(b+a\sin\phi)\cos\phi \tag{21}$$

$$=\frac{a\cos\phi}{b+a\sin\phi}\tag{22}$$

$$\Gamma^{\phi}_{\beta\gamma} = \Gamma^{\phi}_{\theta\theta} = \frac{1}{2} g^{\phi\phi} \left(\frac{\partial g_{\theta\beta}}{\partial x^{\gamma}} + \frac{\partial g_{\theta\gamma}}{\partial x^{\beta}} - \frac{\partial g_{\beta\gamma}}{\partial x^{\theta}} \right)$$
(23)

$$= -\frac{1}{2}g^{\phi\phi} \cdot \frac{\partial g_{\theta\theta}}{\partial \phi} \tag{24}$$

$$= -\frac{1}{2} \cdot \frac{1}{a^2} \cdot 2a(b + a\sin\phi)\cos\phi \tag{25}$$

$$= -\frac{(b+a\sin\phi)\cos\phi}{a} \tag{26}$$

(27)

2. Geometry of de Sitter space

Consider the metric,

$$ds^{2} = (1 - r^{2})dt^{2} - (1 - r^{2})^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$
(28)

which is a solution of Einstein equation with positive cosmological constant (de Sitter spacetime).

- (a) Consider a massive particle undergoing inertial motion in this metric and derive its equations of motion.
- (b) From this point on, we will be mostly concerned with motion in the (t,r) coordinates, so in what follows you can assume that the coordinates θ , ϕ always remain fixed. Show that a particle

initially placed at the origin (i.e. $r|_{t=0} = 0$) with zero velocity (i.e. with $\frac{dr}{dt}|_{t=0} = 0$ will always stay there.

- (c) Show that particles away from r = 0 feel a force towards larger values of, r, and will thus move towards the surface r = 1. On the surface, r = 1 the metric has a (coordinate) singularity. This surface is called the de Sitter horizon.
- (d) Write an expression for the proper distance from r=0 to the de Sitter horizon, and show that it is finite.
- (e) Consider a light ray emitted from r = 0 towards the de Sitter horizon. Calculate its orbit and show that in the (t, r) coordinates the light ray never crosses the horizon.
- (f) As in the case of the Schwarzschild black hole, this is somewhat misleading. Define the analogue of Eddington Finkelstein coordinates \bar{t} , r, in which the outgoing light rays (i.e. those moving towards large values of r) move along straight lines $\bar{t} r = constant$.
- (g) write the metric (28) in these new coordinates and show that it is smooth at r = 1 and can be extended past this surface to r > 1.
- (h) Analyze the causal structure of the metric (28). This means, calculate the form of the in- and out-going lightcones, draw a spacetime diagram in the \bar{t} , r coordinates and plot qualitatively the form of the lightcones for ingoing (moving towards smaller r) and outgoing (moving towards larger r) lightrays.

From this diagram, argue that the surface r=1 does indeed act like a horizon, that is, any object which starts in the region r<1 and then crosses the surface r=1 towards r>1, will never be able to come back to the region r<1. From the persepctive of an observer sitting at r=0 this object is forever lost behind the de Sitter horizon.

Solution:

(a) In this case, the Lagrangian is given by:

$$\mathcal{L} = \sqrt{-g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}} \tag{29}$$

$$= \sqrt{-\left[(1-r^2) \left(\frac{dt}{d\sigma} \right)^2 - (1-r^2)^{-1} \left(\frac{dr}{d\sigma} \right)^2 - r^2 \left(\left(\frac{d\theta}{d\sigma} \right)^2 + \sin^2 \theta \left(\frac{d\phi}{d\sigma} \right)^2 \right) \right]}. \quad (30)$$

If we optimize the Lagrangian only in t we obtain:

$$\frac{\partial \mathcal{L}}{\partial t} = 0,\tag{31}$$

$$\frac{\partial \mathcal{L}}{\partial \dot{t}} = \frac{\partial}{\partial \dot{t}} \sqrt{-\left[(1 - r^2) \left(\frac{dt}{d\sigma} \right)^2 - (1 - r^2)^{-1} \left(\frac{dr}{d\sigma} \right)^2 - r^2 \left(\left(\frac{d\theta}{d\sigma} \right)^2 + \sin^2 \theta \left(\frac{d\phi}{d\sigma} \right)^2 \right) \right]}$$
(32)

$$= \frac{1}{2\mathcal{L}} \frac{\partial}{\partial \dot{t}} \left[-\left[(1 - r^2) \left(\frac{dt}{d\sigma} \right)^2 - (1 - r^2)^{-1} \left(\frac{dr}{d\sigma} \right)^2 - r^2 \left(\left(\frac{d\theta}{d\sigma} \right)^2 + \sin^2 \theta \left(\frac{d\phi}{d\sigma} \right)^2 \right) \right] \right]$$
(33)

$$= \frac{1}{2\mathcal{L}} \cdot -2(1-r^2) \frac{dt}{d\sigma} \tag{34}$$

$$= -\frac{d\sigma}{d\tau} \cdot (1 - r^2) \frac{dt}{d\sigma} \tag{35}$$

$$= -(1 - r^2)\frac{dt}{d\tau} = k, (36)$$

where $\mathcal{L} = \frac{d\tau}{d\sigma}$ and $\dot{t} = \frac{dt}{d\sigma}$.

This means that we obtain for a massive particle:

$$g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu} = \vec{u}\cdot\vec{u} = -1\tag{37}$$

$$-(1-r^2)\dot{t}^2 + \frac{\dot{r}^2}{1-r^2} = 1 \tag{38}$$

$$-(1-r^2)^2\dot{t}^2 + \dot{r}^2 = 1 - r^2 \tag{39}$$

$$-k^2 + \dot{r}^2 = 1 - r^2, (40)$$

in which we were so generous to redefine the constant k. Also note for $\vec{u} \cdot \vec{u} = -1$, $ds^2 = -d\tau^2$.

(b) From the initial condition $r(0) = r_0 = 0$ and $\dot{r}(0) = 0$. We see that $k^2 = 1$ and the equation of motion for r becomes,

$$\dot{r} = r,\tag{41}$$

$$r(\tau) = r_0 e^{\tau} = 0. \tag{42}$$

Were we use the initial condition that $r_0 = 0$. This means that the particle at rest will stay at rest at r = 0.

- (c) For $r_0 \neq 0$ (but small) we can use $r(\tau) = r_0 e^{\tau}$ to show that r grows exponential with τ . However in this approximation nothing special happens when we approach the horizon at r = 1.
- (d) The proper distance from r = 0 to the horizon is given by:

$$L = \int_{0}^{1} \frac{\mathrm{dr}}{\sqrt{1 - r^2}} = \arcsin \Big|_{0}^{1} = \frac{\pi}{2}.$$
 (43)

(e) If we want to calculate something for a light-ray we don't use a proper-time constraints, but use the metric and the property that $ds^2 = 0$ for light, radial motion so we have $d\phi = d\theta = 0$, so $ds^2 = 0$ holds,

$$dt^2 = \frac{dr^2}{(1-r^2)^2}. (44)$$

Integrate:

$$t + C = \int \frac{\mathrm{dr}}{1 - r^2},\tag{45}$$

$$= \int \frac{\mathrm{dr}}{(1-r)(1+r)},\tag{46}$$

$$= \int \frac{\mathrm{dr}}{2} \left(\frac{1}{1+r} + \frac{1}{1-r} \right),\tag{47}$$

$$=\frac{1}{2}\ln\left(\frac{1+r}{1-r}\right).\tag{48}$$

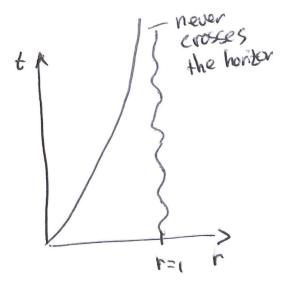
For a light ray emitted at t = 0, r = 0, the integration constant disappears. For small r we find:

$$\frac{1}{2}\ln\left(\frac{1+r}{1-r}\right) \approx r. \tag{49}$$

And hence $t \approx r$.

As r approaches the horizon, $r \to 1$, and the denominator in the logarithm blows up,

so $t \to \infty$ as $r \to 1$. See the image which is shown below for a complete overview:



(f) Now we look for new coordinates, especially a new time coordinate \bar{t} such that the equation of motion for an outgoing light ray is $\bar{t} - r = \text{const.}$. We modify the expression of (e):

$$t - \frac{1}{2}\ln\left(\frac{1+r}{1-r}\right) = \text{const.},\tag{50}$$

$$= t - \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right) + r - r. \tag{51}$$

So this means that:

$$\bar{t} = t + r - \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right). \tag{52}$$

and

$$r = r \tag{53}$$

(g) To write the metric in these coordinates we need,

$$\frac{\mathrm{dt}}{\mathrm{d}\tau} = \frac{\mathrm{d}\bar{\mathrm{t}}}{\mathrm{d}\tau} + \frac{\mathrm{d}}{\mathrm{d}\tau} \left(-r + \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right) \right),\tag{54}$$

$$= \frac{\mathrm{d}\bar{\mathrm{t}}}{\mathrm{d}\tau} - \frac{\mathrm{d}\mathrm{r}}{\mathrm{d}\tau} + \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}\tau} \left(\ln(1+r) - \ln(1-r)\right),\tag{55}$$

$$= \frac{\mathrm{d}\bar{\mathrm{t}}}{\mathrm{d}\tau} - \frac{\mathrm{d}\mathrm{r}}{\mathrm{d}\tau} + \frac{1}{2} \left(\frac{1}{1+r} \frac{\mathrm{d}\mathrm{r}}{\mathrm{d}\tau} + \frac{1}{1-r} \frac{\mathrm{d}\mathrm{r}}{\mathrm{d}\tau} \right),\tag{56}$$

$$= \frac{\mathrm{d}\bar{\mathrm{t}}}{\mathrm{d}\tau} - \frac{\mathrm{dr}}{\mathrm{d}\tau} \left(\frac{1}{1 - r^2} - 1 \right),\tag{57}$$

$$= \frac{\mathrm{d}\bar{\mathrm{t}}}{\mathrm{d}\tau} + \frac{r^2}{1 - r^2} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\tau}.\tag{58}$$

So this means that:

$$dt = d\bar{t} + \frac{r^2}{1 - r^2} dr. \tag{59}$$

For this exercise we ignore the θ and ϕ part, because it remains the same. If we rewrite the metric we obtain:

$$ds^{2} = (1 - r^{2})dt^{2} - (1 - r^{2})^{-1}dr^{2},$$
(60)

$$= (1 - r^2) \left(d\bar{t} + \frac{r^2}{1 - r^2} dr \right)^2 - (1 - r^2)^{-1} dr^2, \tag{61}$$

$$= (1 - r^2)d\bar{t}^2 + 2r^2d\bar{t}dr + \frac{r^4}{1 - r^2}dr^2 - \frac{1}{1 - r^2}dr^2,$$
 (62)

$$= (1 - r^2)d\bar{t}^2 + 2r^2d\bar{t}dr + \frac{r^4 - 1}{1 - r^2}dr^2,$$
(63)

$$= (1 - r^2)d\bar{t}^2 + 2r^2d\bar{t}dr - (1 + r^2)dr^2.$$
(64)

Using the fact that $-(1-r^2)(1+r^2) = r^4 - 1$.

This result means the metric is smooth everywhere and can be extended beyond r = 1.

(h) We are now going to investigate the propagation of all light rays moving in radial direction. So we solve:

$$ds^{2} = (1 - r^{2})d\bar{t}^{2} + 2r^{2}d\bar{t}dr - (1 + r^{2})dr^{2}.$$
 (65)

Deviding by dr^2 yields a quadratic equation for $\frac{d\bar{t}}{dr} \equiv \lambda$:

$$(1 - r^2)\lambda^2 + 2r^2\lambda - (1 - r^2) = 0. (66)$$

So there are two solutions:

$$\lambda = \frac{-2r^2 \pm \sqrt{4r^4 - 4 \cdot (1 - r^2) \cdot - (1 + r^2)}}{2(1 - r^2)},\tag{67}$$

$$=\frac{-2r^2 \pm \sqrt{4}}{2(1-r^2)},\tag{68}$$

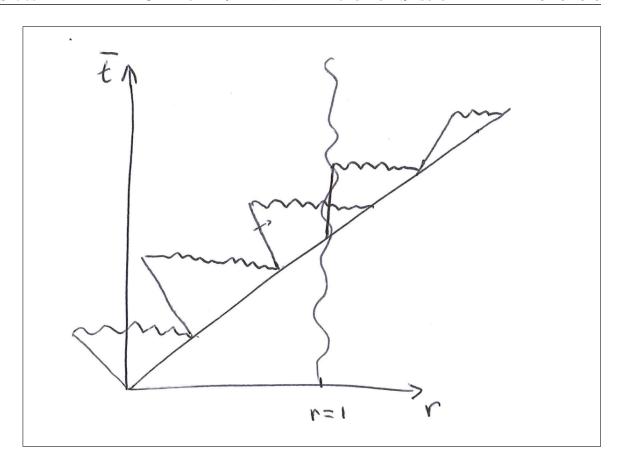
$$=\frac{-r^2\pm 1}{1-r^2}. (69)$$

This means the solutions are given by:

$$\lambda_{+} = 1, \tag{70}$$

$$\lambda_{-} = -\frac{1+r^2}{1-r^2}. (71)$$

The result is that the outgoing angle is precisely 45 degrees. For the negative solution we have a different result that implies that for small r we have an angle of minus 45 degrees. However we not that as $r \to 1$, λ_- diverges and for r > 1 it even becomes positive, ingoing and outgoing light rays start to travel in the same direction. This means once a particle has crossed the horizon at r=1 it has to stay within the light cone preventing it from returning to values r < 1.



3. Expanding flat universe

Consider the following metric describing an expanding flat Universe,

$$ds^{2} = dt^{2} - a(t)^{2}(dx^{2} + dy^{2} + dz^{2}).$$
(72)

- (a) Compute the Christoffel symbols in terms of a(t).
- (b) Derive the equations of motion for massive particles moving inertially in this spacetime
- (c) Check that the orbits $\{x(t), y(t), z(t)\} = constant$, correspond to inertial motion.

From this point on, we focus on the specific case of an inflating Universe where,

$$a(t) = \exp\left(\sqrt{\frac{\Lambda}{3}}t\right) \tag{73}$$

- (d) A light ray is emitted from the point $\{t, x, y, z\} = \{t_0, 0, 0, 0\}$ towards positive values of x. What is the orbit that the light ray will follow?
- (e) Find the maximum value of the coordinate x that the light ray described above can reach.
- (f) Using the metric compute the physical spacelike distance along the slice $t = t_0$ corresponding to the coordinate distance in x that you found in e).

Solution:

(a) So we consider the following metric:

$$ds^{2} = dt^{2} - a(t)^{2}(dx^{2} + dy^{2} + dz^{2}).$$
(74)

This gives a Lagrangian given by:

$$\mathcal{L} = \sqrt{-\left[\left(\frac{dt}{d\sigma}\right)^2 - a(t)^2 \left(\left(\frac{dx}{d\sigma}\right)^2 + \left(\frac{dy}{d\sigma}\right)^2 + \left(\frac{dz}{d\sigma}\right)^2\right)\right]}.$$
 (75)

This mean we obtain for t:

$$\frac{\partial \mathcal{L}}{\partial t} = \frac{1}{2\mathcal{L}} \frac{\partial}{\partial t} \left[-\left[\left(\frac{dt}{d\sigma} \right)^2 - a(t)^2 \left(\left(\frac{dx}{d\sigma} \right)^2 + \left(\frac{dy}{d\sigma} \right)^2 + \left(\frac{dz}{d\sigma} \right)^2 \right) \right] \right]$$
(76)

$$= \frac{1}{2\mathcal{L}} 2a(t) \frac{\partial a}{\partial t} \left(\left(\frac{dx}{d\sigma} \right)^2 + \left(\frac{dy}{d\sigma} \right)^2 + \left(\frac{dz}{d\sigma} \right)^2 \right)$$
 (77)

$$= a(t)\frac{\partial a}{\partial t} \left(\left(\frac{dx}{d\tau} \right)^2 + \left(\frac{dy}{d\tau} \right)^2 + \left(\frac{dz}{d\tau} \right)^2 \right), \tag{78}$$

$$\frac{\partial \mathcal{L}}{\partial \dot{t}} = \frac{1}{2\mathcal{L}} \frac{\partial}{\partial \dot{t}} \left[-\left[\left(\frac{dt}{d\sigma} \right)^2 - a(t)^2 \left(\left(\frac{dx}{d\sigma} \right)^2 + \left(\frac{dy}{d\sigma} \right)^2 + \left(\frac{dz}{d\sigma} \right)^2 \right) \right] \right]$$
(79)

$$= -\frac{1}{2\mathcal{L}} 2\frac{dt}{d\sigma} \tag{80}$$

$$= -\frac{dt}{d\tau},\tag{81}$$

where $\mathcal{L} = \frac{d\tau}{d\sigma}$. This leads to the following Lagrange equation and means that the Christoffel symbols

$$\frac{\partial}{\partial \tau} \left(\frac{\partial \mathcal{L}}{\partial \dot{t}} \right) - \frac{\partial \mathcal{L}}{\partial t} = 0 \tag{82}$$

$$\frac{\partial}{\partial \tau} \left(-\frac{dt}{d\tau} \right) - a(t) \frac{\partial a(t)}{\partial t} \left(\left(\frac{dx}{d\tau} \right)^2 + \left(\frac{dy}{d\tau} \right)^2 + \left(\frac{dz}{d\tau} \right)^2 \right) = 0 \tag{83}$$

$$\frac{d^2t}{d\tau^2} + a\frac{\partial a}{\partial t} \left(\left(\frac{dx}{d\tau} \right)^2 + \left(\frac{dy}{d\tau} \right)^2 + \left(\frac{dz}{d\tau} \right)^2 \right) = 0, \tag{84}$$

$$\Gamma^{t}_{xx} = \Gamma^{t}_{yy} = \Gamma^{t}_{zz} = a \frac{\partial a}{\partial t}.$$
 (85)

Now let's consider x or a cyclic perturbation of x, y, z:

$$\frac{\partial \mathcal{L}}{\partial x} = 0,\tag{86}$$

$$\frac{\partial \mathcal{L}}{\partial \dot{x}} = \frac{1}{2\mathcal{L}} \frac{\partial}{\partial \dot{x}} \left[-\left[\left(\frac{dt}{d\sigma} \right)^2 - a(t)^2 \left(\left(\frac{dx}{d\sigma} \right)^2 + \left(\frac{dy}{d\sigma} \right)^2 + \left(\frac{dz}{d\sigma} \right)^2 \right) \right] \right]$$
(87)

$$=\frac{1}{2\mathcal{L}}a(t)^2 2\frac{dx}{d\sigma} \tag{88}$$

$$=a(t)^2\frac{dx}{d\sigma}. (89)$$

The Lagrange equation can then be solved to obtain the Christoffel symbols,

$$\frac{d}{d\tau} \left(\frac{d\mathcal{L}}{d\dot{x}} \right) - \frac{\partial \mathcal{L}}{\partial x} = 0 \tag{90}$$

$$\frac{d}{d\tau} \left(a(t)^2 \frac{dx}{d\tau} \right) = 0 \tag{91}$$

$$2a(t)\frac{da(t)}{dt}\frac{dt}{d\tau}\frac{dx}{d\tau} + a(t)^2\frac{d^2x}{d\tau^2} = 0$$
(92)

$$\frac{d^2x}{d\tau^2} + \frac{2}{a(t)}\frac{\partial a}{\partial t}\frac{dt}{d\tau}\frac{dx}{d\tau}.$$
 (93)

This implies that:

$$\Gamma_{xt}^x = \Gamma_{yt}^y = \Gamma_{zt}^z = \frac{1}{a} \frac{\partial a}{\partial t}$$
 (94)

Mind the factor 2, due to symmetry.

(b) For a massive particle we know that:

$$1 = \dot{t}^2 - a(t)^2(\dot{x}^2 + \dot{y}^2 + \dot{z}^2). \tag{95}$$

From the previous subproblem (a) we know that:

$$2a^2\dot{x} = k. (96)$$

Because of symmetry this means that we have:

$$\dot{x} = \frac{k}{2a^2},\tag{97}$$

$$\dot{y} = \frac{l}{2a^2},\tag{98}$$

$$\dot{z} = \frac{m}{2a^2},\tag{99}$$

This means that the equation for a massive particle becomes:

$$1 = \dot{t}^2 - \frac{1}{4a^2} \left(k^2 + l^2 + m^2 \right). \tag{100}$$

This can be rewritten as:

$$\dot{t}^2 = 1 + \frac{1}{4a^2} \left(k^2 + l^2 + m^2 \right). \tag{101}$$

(c) If we have $\{x(t), y(t), z(t)\} = constant$, this means that:

$$\dot{x} = \frac{\partial x}{\partial \tau} = \frac{\partial x}{\partial t} \frac{\partial t}{\partial \tau} = 0 \cdot \frac{\partial t}{\partial \tau} = 0. \tag{102}$$

The same is valid for the cyclic permutable coordinates. so $\dot{x} = \dot{y} = \dot{z} = 0$. This gives that the equations of motion give:

$$\ddot{t} = \ddot{x} = \ddot{y} = \ddot{z} = 0. \tag{103}$$

So there is inertial motion.

(d) For now we assume:

$$a(t) = \exp\left(\sqrt{\frac{\Lambda}{3}}t\right) \tag{104}$$

A light ray so that means that $g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}=0$, this gives:

$$0 = dt^2 - \exp\left(\sqrt{\frac{\Lambda}{3}}t\right)dx^2, \tag{105}$$

$$dt^2 = \exp\left(\sqrt{\frac{\Lambda}{3}}t\right)dx^2,\tag{106}$$

$$dx = \exp\left(-\frac{1}{2}\sqrt{\frac{\Lambda}{3}}t\right)dt,\tag{107}$$

$$x(t) = -\frac{\exp\left(-\frac{1}{2}\sqrt{\frac{\Lambda}{3}}t\right)}{\frac{1}{2}\sqrt{\frac{\Lambda}{3}}} + C. \tag{108}$$

Now we want to do set boundary conditions: $t = t_0$, $x(t_0) = 0$, this means the constant becomes:

$$C = \frac{\exp\left(-\frac{1}{2}\sqrt{\frac{\Lambda}{3}}t_0\right)}{\frac{1}{2}\sqrt{\frac{\Lambda}{3}}}.$$
 (109)

This means the equation for x(t) becomes:

$$x(t) = \left(\frac{\exp\left(-\frac{1}{2}\sqrt{\frac{\Lambda}{3}}t_0\right)}{\frac{1}{2}\sqrt{\frac{\Lambda}{3}}} - \frac{\exp\left(-\frac{1}{2}\sqrt{\frac{\Lambda}{3}}t\right)}{\frac{1}{2}\sqrt{\frac{\Lambda}{3}}}\right),\tag{110}$$

$$=2\sqrt{\frac{3}{\Lambda}}\left(\exp\left(-\frac{1}{2}\sqrt{\frac{\Lambda}{3}}t_0\right) - \exp\left(-\frac{1}{2}\sqrt{\frac{\Lambda}{3}}t\right)\right)$$
(111)

(e) For this we take $t \to \infty$, which gives:

$$\lim_{t \to \infty} x(t) = 2\sqrt{\frac{3}{\Lambda}} \exp\left(-\frac{1}{2}\sqrt{\frac{\Lambda}{3}}t_0\right)$$
 (112)

(f) We take a slice in time, $t = t_0$, this means that dt = 0, and the metric becomes:

$$ds^2 = a^2 dx^2, (113)$$

$$ds = adx, (114)$$

$$s = a(t_0)x_{\max}(t_0), \tag{115}$$

$$= \exp\left(\sqrt{\frac{\Lambda}{3}}t_0\right) \cdot 2\sqrt{\frac{3}{\Lambda}} \exp\left(-\frac{1}{2}\sqrt{\frac{\Lambda}{3}}t_0\right),\tag{116}$$

$$=2\sqrt{\frac{3}{\Lambda}}\exp\left(\frac{1}{2}\sqrt{\frac{\Lambda}{3}}t_0\right). \tag{117}$$

4. General to Special Relativity

Assuming a general coordinate transformation, the components of vector fields \mathbf{a} and \mathbf{b} transform as follows:

$$a'^{\alpha} = \frac{\partial x'^{\alpha}}{\partial x^{\beta}} a^{\beta}, \qquad b'_{\alpha} = \frac{\partial x^{\beta}}{\partial x'^{\alpha}} b_{\beta},$$
 (118)

(a) Show that the components of a metric tensor transform under general coordinate transformations as:

$$g'_{\alpha\beta}(x) = \frac{\partial x^{\gamma}}{\partial x'^{\alpha}} \frac{\partial x^{\delta}}{\partial x'^{\beta}} g_{\gamma\delta}(x)$$
(119)

(b) Show that the scalar product between two vector fields:

$$\mathbf{v}(x) \cdot \mathbf{w}(x) = g_{\alpha\beta}(x)v^{\alpha}(x)w^{\beta}(x) \tag{120}$$

is invariant under the general coordinate transformations.

(c) Show that under a general coordinate transformation $(x'^{\alpha} = (\Lambda^{-1})^{\alpha}{}_{\beta}x^{\beta})$, where Λ^{-1} is a constant invertable matrix, the components of vector field **b** transform as:

$$b_{\alpha}' = \Lambda_{\alpha}^{\beta} b_{\beta} \tag{121}$$

(d) Now consider a local inertial frame at a Point P where $g_{\alpha\beta} = \eta_{\alpha\beta}$ and the first derivative of $g_{\alpha\beta}$ vanishes. Using eq. (119), show that the components of the Minkowski spacetime metric $\eta_{\alpha\beta}$ are invariant under general coordinate transformations (as defined in the previous subquestion). In other words, show that the conditions for which $\eta'_{\alpha\beta} = \eta_{\alpha\beta}$ are given by:

$$(\Lambda^T)^{\alpha}_{\gamma}(\Lambda)^{\gamma}_{\beta} = \mathbb{1}^{\alpha}_{\beta} \quad \text{where} \quad (\Lambda^T)^{\alpha}_{\beta} \equiv \eta^{\alpha\gamma}\eta_{\beta\delta}\Lambda^{\delta}_{\gamma}$$
 (122)

Solution:

(a) The metric tensor components can be written as the product of 2 vectors:

$$g'_{\alpha\beta} = a'_{\alpha}b'_{\beta} \tag{123}$$

Now substituting the expression for a general coordinate transformation gives:

$$g'_{\alpha\beta} = \frac{\partial x^{\gamma}}{\partial x'^{\alpha}} a_{\gamma} \frac{\partial x^{\delta}}{\partial x'^{\beta}} b_{\delta}$$
 (124)

$$= \frac{\partial x^{\gamma}}{\partial x'^{\alpha}} \frac{\partial x^{\delta}}{\partial x'^{\beta}} a_{\gamma} b_{\delta} \tag{125}$$

$$= \frac{\partial x^{\gamma}}{\partial x'^{\alpha}} \frac{\partial x^{\delta}}{\partial x'^{\beta}} g_{\gamma\delta}$$
 (126)

(b) Take the scalar product definition and fill in the transformation equations previously specified in the question.

$$\mathbf{v'}(x) \cdot \mathbf{w'}(x) = g'_{\alpha\beta}(x)v'^{\alpha}(x)w'^{\beta}(x) \tag{127}$$

$$= \frac{\partial x^{\gamma}}{\partial x'^{\alpha}} \frac{\partial x^{\delta}}{\partial x'^{\beta}} g_{\gamma\delta}(x) \frac{\partial x'^{\alpha}}{\partial x^{\nu}} a^{\nu} \frac{\partial x'^{\beta}}{\partial x'^{\mu}} b^{\mu}$$
(128)

$$= \delta^{\gamma}_{\nu} \delta^{\delta}_{\mu} g_{\gamma\delta} a^{\nu} b^{\mu} \tag{129}$$

$$=g_{\gamma\delta}a^{\gamma}b^{\delta}\tag{130}$$

$$= \boldsymbol{a}(x) \cdot \boldsymbol{b}(x) \tag{131}$$

So yes, the scalar product between two vector fields in invariant under the general coordinate transformations.

(c) Start with the general coordinate transformation:

$$x^{\prime \alpha} = (\Lambda^{-1})^{\alpha}{}_{\beta} x^{\beta} \tag{132}$$

Then multiply both sides by $\Lambda_{\alpha}^{\delta}$.

$$\Lambda_{\alpha}^{\delta} x'^{\alpha} = \Lambda_{\alpha}^{\delta} (\Lambda^{-1})^{\alpha}{}_{\beta} x^{\beta} \tag{133}$$

$$= \delta^{\delta}_{\beta} x^{\beta}$$

$$= x^{\delta}$$
(134)

$$=x^{\delta} \tag{135}$$

We can also write this as follows (to be consistent with the notation of the question.

$$x^{\beta} = \Lambda^{\beta}_{\alpha} x^{\prime \alpha} \quad \Rightarrow \quad \frac{\partial x^{\beta}}{\partial x^{\prime \alpha}} = \Lambda^{\beta}_{\alpha}$$
 (136)

We can substitute this in the transformation of a vector field to get the final solution:

$$b_{\alpha}' = \frac{\partial x^{\beta}}{\partial x'^{\alpha}} b_{\beta} \tag{137}$$

$$= \Lambda_{\alpha}^{\beta} b_{\beta} \tag{138}$$

(d) We can rewrite eq. (119) using eq. (121), and set $g_{\alpha\beta} = \eta_{\alpha\beta}$, which gives:

$$\eta_{\alpha\beta}' = \Lambda_{\alpha}^{\gamma} \Lambda_{\beta}^{\delta} \eta_{\gamma\delta} \tag{139}$$

Then multiply this expression by $\eta^{\epsilon\alpha}$

$$\delta_{\beta}^{\epsilon} = \eta^{\epsilon \alpha} \eta_{\gamma \delta} \Lambda_{\alpha}^{\gamma} \Lambda_{\beta}^{\delta} \tag{140}$$

Additionally, we know that:

$$\eta_{\alpha\beta} = \eta'_{\alpha\beta} = a'_{\alpha}b'_{\beta} \tag{141}$$

$$= \Lambda_{\alpha}^{\gamma} \Lambda_{\beta}^{\delta} a_{\gamma} b_{\delta} \tag{142}$$

$$= \Lambda_{\alpha}^{\gamma} \Lambda_{\beta}^{\delta} \eta_{\gamma\delta} \tag{143}$$

or equivalently, $(\Lambda^T)^{\epsilon}_{\delta} = \eta^{\epsilon\alpha}\eta_{\gamma\delta}\Lambda^{\gamma}_{\alpha}\Lambda^{\delta}_{\beta}$

Substituting this in eq. (140) gives

$$\delta_{\beta}^{\epsilon} = (\Lambda^{T})^{\epsilon} {}_{\delta} \Lambda_{\beta}^{\delta} = \mathbb{1}_{\beta}^{\epsilon} \tag{144}$$

QED

5. Einstein & Riemann

(a) Show that Einstein's equations,

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu},\tag{145}$$

can also be written as,

$$R_{\mu\nu} = 8\pi G \left(T_{\mu\nu} + \frac{T}{2 - D} g_{\mu\nu} \right),$$
 (146)

in which D is the dimension of space time.

(b) How many independent components does the Riemann tensor have in 2 dimensions?¹

Solution:

(a)

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu},\tag{147}$$

$$g^{\mu\nu}R_{\mu\nu} - \frac{1}{2}g^{\mu\nu}g_{\mu\nu}R = 8\pi G T_{\mu\nu}g^{\mu\nu}, \tag{148}$$

$$R - \frac{D}{2}R = 8\pi GT,\tag{149}$$

$$R\left(1 - \frac{D}{2}\right) = 8\pi GT,\tag{150}$$

$$R = \frac{8\pi GT}{1 - \frac{D}{2}},\tag{151}$$

where $D = g^{\mu\nu}g_{\mu\nu}$.

Now substituting back into Einstein's equations,

$$R_{\mu\nu} = 8\pi G T_{\mu\nu} + \frac{1}{2} g_{\mu\nu} R, \tag{152}$$

$$=8\pi G T_{\mu\nu} + \frac{1}{2} g_{\mu\nu} \frac{8\pi G T}{1 - \frac{D}{2}},\tag{153}$$

$$=8\pi G\left(T_{\mu\nu} + \frac{T}{2-D}g_{\mu\nu}\right). \tag{154}$$

(b) This exercise is a common exercise which need to be fluent by the student. Best to approach this problem is by writing all possibilities as counting in binary:

 R_{1111} R_{1211} R_{2111} R_{2211}

 R_{1112} R_{1212} R_{2112} R_{2212}

 R_{1121} R_{1221} R_{2121} R_{2222}

 R_{1122} R_{1222} R_{2122} R_{2222}

We know that the metric is antisymmetric in the first two indices and the last two indices, this means that the following become zero:

 $\begin{array}{cccccc} R_{1111} & R_{1211} & R_{2111} & R_{2211} \\ R_{1112} & R_{1212} & R_{2112} & R_{2212} \\ R_{1121} & R_{1221} & R_{2121} & R_{2222} \\ R_{1122} & R_{1222} & R_{2122} & R_{2222} \end{array}$

These four remaining Riemann tensor components can therefore be related using the antisymmetric properties as:

$$R_{1212} = R_{2121} = -R_{1221} = -R_{2112} \tag{155}$$

So this mean there is only 1 independent component. The number of independent components can also be found using:

$$IC = \frac{1}{12}N^2(N^2 - 1) \tag{156}$$

¹Show explicitly that there are that amount of independent components.