
Sirius A General Relativity - Practice Session 29-10-2025

Practice session: General Relativity

Kapteyn Learning Community Sirius A
Give motivations and/or derivations for your answers.

1. A torus in two-dimensional Euclidean space

Consider the metric

ds2 = (b+ a sinϕ)2dθ2 + a2dϕ2 (1)

Which describes a torus in 2D Euclidean space in the spherical coordinate system (θ, ϕ), where a
and b are the torus radius and the radius of its section respectively.

(a) Derive the equations of motion for this metric for coordinate θ, using the Lagrangian.

(b) Read of the non-zero Christoffel symbols from your equations of motion derived in (a), using
the formula

d2xα

dτ2
+ Γα

βγ

dxβ

dτ

dxγ

dτ
= 0. (2)

(c) Also derive/compute all (consider both θ and ϕ) the non-zero Christoffel symbols ‘by hand’
using the formula

gαδΓ
δ
βγ =

1

2

(
∂gαβ
∂xγ

+
∂gαγ
∂xβ

− ∂gβγ
∂xα

)
. (3)

Solution:

(a) First the Lagrangian needs to be written down

L =
√

−gµν ẋµẋν =

√√√√−

[
(b+ a sinϕ)2

(
dθ

dσ

)2

+ a2
(
dϕ

dσ

)2
]
. (4)

Subsequently, the equations of motion in θ can be derived,

∂L
∂θ

= 0 (5)

∂L
∂θ̇

=
1

2L
∂

∂θ̇

[
−

[
(b+ a sinϕ)2

(
dθ

dσ

)2

+ a2
(
dϕ

dσ

)2
]]

(6)

= − 1

2L
2(b+ a sinϕ)2

dθ

dσ
(7)

= −(b+ a sinϕ)2
dθ

dτ
(8)

(9)

Now the equation of motion looks as follows,

d

dτ

(
∂L
∂θ̇

)
− ∂L

∂θ
= 0 (10)

d

dτ

(
−(b+ a sinϕ)2

dθ

dτ

)
= 0 (11)

−(b+ a sinϕ)2θ̈ − (b+ a sinϕ)θ̇ · 2a cosϕ ϕ̇ = 0 (12)

θ̈ +
2a cosϕ

b+ a sinϕ
ϕ̇θ̇ = 0. (13)
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(b) Looking at the equation of motion in (a), the non-zero Christoffel symbols are,

Γθ
θϕ =

1

2
· 2a cosϕ

b+ a sinϕ
=

a cosϕ

b+ a sinϕ
. (14)

(c) Let’s first consider the metric and its inverse. The metric is symmetric and can therefore
trivially be inverted as follows

gµν =

(
gθθ gθϕ
gϕθ gϕϕ

)
=

(
(b+ a sinϕ)2 0

0 a2

)
=⇒ gµν =

(
(b+ a sinϕ)−2 0

0 a−2

)
(15)

The derivatives of the metric w.r.t. the coordinates are then,

∂gµν
∂θ

= 0 (16)

∂gµν
∂ϕ

=

(
2a(b+ a sinϕ) cosϕ 0

0 0

)
(17)

(18)

Noting that we only have two coordinates and the metric is diagonal, we get the following
non-zero Christoffel symbols from the definition,

Γθ
βγ = Γθ

θϕ =
1

2
gθθ

(
∂gθβ
∂xγ

+
∂gθγ
∂xβ

−
�

�
�∂gβγ

∂xθ

)
(19)

=
1

2
gθθ · ∂gθθ

∂ϕ
(20)

=
1

2
· 1

(b+ a sinϕ)2
· 2a(b+ a sinϕ) cosϕ (21)

=
a cosϕ

b+ a sinϕ
(22)

Γϕ
βγ = Γϕ

θθ =
1

2
gϕϕ

(
�
��

∂gθβ
∂xγ

+
�

��
∂gθγ
∂xβ

− ∂gβγ
∂xθ

)
(23)

= −1

2
gϕϕ · ∂gθθ

∂ϕ
(24)

= −1

2
· 1

a2
· 2a(b+ a sinϕ) cosϕ (25)

= − (b+ a sinϕ) cosϕ

a
(26)

(27)

2. Geometry of de Sitter space

Consider the metric,

ds2 = (1− r2)dt2 − (1− r2)−1dr2 − r2(dθ2 + sin2 θdϕ2) (28)

which is a solution of Einstein equation with positive cosmological constant (de Sitter spacetime).

(a) Consider a massive particle undergoing inertial motion in this metric and derive its equations
of motion.

(b) From this point on, we will be mostly concerned with motion in the (t, r) coordinates, so in
what follows you can assume that the coordinates θ, ϕ always remain fixed. Show that a particle



Sirius A General Relativity - Practice Session 29-10-2025

initially placed at the origin (i.e. r|t=0 = 0) with zero velocity (i.e. with dr
dt |t=0 = 0 will always

stay there.

(c) Show that particles away from r = 0 feel a force towards larger values of, r, and will thus move
towards the surface r = 1. On the surface, r = 1 the metric has a (coordinate) singularity. This
surface is called the de Sitter horizon.

(d) Write an expression for the proper distance from r = 0 to the de Sitter horizon, and show that
it is finite.

(e) Consider a light ray emitted from r = 0 towards the de Sitter horizon. Calculate its orbit and
show that in the (t, r) coordinates the light ray never crosses the horizon.

(f) As in the case of the Schwarzschild black hole, this is somewhat misleading. Define the analogue
of Eddington Finkelstein coordinates t̄, r, in which the outgoing light rays (i.e. those moving
towards large values of r) move along straight lines t̄− r = constant.

(g) write the metric (28) in these new coordinates and show that it is smooth at r = 1 and can be
extended past this surface to r > 1.

(h) Analyze the causal structure of the metric (28). This means, calculate the form of the in- and
out-going lightcones, draw a spacetime diagram in the t̄, r coordinates and plot qualitatively
the form of the lightcones for ingoing (moving towards smaller r) and outgoing (moving towards
larger r) lightrays.
From this diagram, argue that the surface r = 1 does indeed act like a horizon, that is, any
object which starts in the region r < 1 and then crosses the surface r = 1 towards r > 1, will
never be able to come back to the region r < 1. From the persepctive of an observer sitting at
r = 0 this object is forever lost behind the de Sitter horizon.

Solution:

(a) In this case, the Lagrangian is given by:

L =
√
−gµν ẋµẋν (29)

=

√√√√−

[
(1− r2)

(
dt

dσ

)2

− (1− r2)−1

(
dr

dσ

)2

− r2

((
dθ

dσ

)2

+ sin2 θ

(
dϕ

dσ

)2
)]

. (30)

If we optimize the Lagrangian only in t we obtain:

∂L
∂t

= 0, (31)

∂L
∂ṫ

=
∂

∂ṫ

√√√√−

[
(1− r2)

(
dt

dσ

)2

− (1− r2)−1

(
dr

dσ

)2

− r2

((
dθ

dσ

)2

+ sin2 θ

(
dϕ

dσ

)2
)]

(32)

=
1

2L
∂

∂ṫ

[
−

[
(1− r2)

(
dt

dσ

)2

− (1− r2)−1

(
dr

dσ

)2

− r2

((
dθ

dσ

)2

+ sin2 θ

(
dϕ

dσ

)2
)]]
(33)

=
1

2L
· −2(1− r2)

dt

dσ
(34)

= −dσ

dτ
· (1− r2)

dt

dσ
(35)

= −(1− r2)
dt

dτ
= k, (36)

where L = dτ
dσ and ṫ = dt

dσ .
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This means that we obtain for a massive particle:

gµν ẋ
µẋν = u⃗ · u⃗ = −1 (37)

−(1− r2)ṫ2 +
ṙ2

1− r2
= 1 (38)

−(1− r2)2ṫ2 + ṙ2 = 1− r2 (39)

−k2 + ṙ2 = 1− r2, (40)

in which we were so generous to redefine the constant k. Also note for u⃗ · u⃗ = −1, ds2 =
−dτ2.

(b) From the initial condition r(0) = r0 = 0 and ṙ(0) = 0. We see that k2 = 1 and the equation
of motion for r becomes,

ṙ = r, (41)

r(τ) = r0e
τ = 0. (42)

Were we use the initial condition that r0 = 0. This means that the particle at rest will stay
at rest at r = 0.

(c) For r0 ̸= 0 (but small) we can use r(τ) = r0e
τ to show that r grows exponential with τ .

However in this approximation nothing special happens when we approach the horizon at
r = 1.

(d) The proper distance from r = 0 to the horizon is given by:

L =

1∫
0

dr√
1− r2

= arcsin
∣∣∣1
0
=

π

2
. (43)

(e) If we want to calculate something for a light-ray we don’t use a proper-time constraints,
but use the metric and the property that ds2 = 0 for light, radial motion so we have
dϕ = dθ = 0, so ds2 = 0 holds,

dt2 =
dr2

(1− r2)2
. (44)

Integrate:

t+ C =

∫
dr

1− r2
, (45)

=

∫
dr

(1− r)(1 + r)
, (46)

=

∫
dr

2

(
1

1 + r
+

1

1− r

)
, (47)

=
1

2
ln

(
1 + r

1− r

)
. (48)

For a light ray emitted at t = 0, r = 0, the integration constant disappears. For small r we
find:

1

2
ln

(
1 + r

1− r

)
≈ r. (49)

And hence t ≈ r.
As r approaches the horizon, r → 1, and the denominator in the logarithm blows up,
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so t → ∞ as r → 1. See the image which is shown below for a complete overview:

(f) Now we look for new coordinates, especially a new time coordinate t̄ such that the equation
of motion for an outgoing light ray is t̄− r = const.. We modify the expression of (e):

t− 1

2
ln

(
1 + r

1− r

)
= const., (50)

= t− 1

2
ln

(
1 + r

1− r

)
+ r − r. (51)

So this means that:

t̄ = t+ r − 1

2
ln

(
1 + r

1− r

)
. (52)

and

r = r (53)

(g) To write the metric in these coordinates we need,

dt

dτ
=

dt̄

dτ
+

d

dτ

(
−r +

1

2
ln

(
1 + r

1− r

))
, (54)

=
dt̄

dτ
− dr

dτ
+

1

2

d

dτ
(ln(1 + r)− ln(1− r)) , (55)

=
dt̄

dτ
− dr

dτ
+

1

2

(
1

1 + r

dr

dτ
+

1

1− r

dr

dτ

)
, (56)

=
dt̄

dτ
− dr

dτ

(
1

1− r2
− 1

)
, (57)

=
dt̄

dτ
+

r2

1− r2
dr

dτ
. (58)

So this means that:

dt = dt̄ +
r2

1− r2
dr. (59)
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For this exercise we ignore the θ and ϕ part, because it remains the same. If we rewrite the
metric we obtain:

ds2 = (1− r2)dt2 − (1− r2)−1dr2, (60)

= (1− r2)

(
dt̄ +

r2

1− r2
dr

)2

− (1− r2)−1dr2, (61)

= (1− r2)dt̄2 + 2r2dt̄dr +
r4

1− r2
dr2 − 1

1− r2
dr2, (62)

= (1− r2)dt̄2 + 2r2dt̄dr +
r4 − 1

1− r2
dr2, (63)

= (1− r2)dt̄2 + 2r2dt̄dr− (1 + r2)dr2. (64)

Using the fact that −(1− r2)(1 + r2) = r4 − 1.
This result means the metric is smooth everywhere and can be extended beyond r = 1.

(h) We are now going to investigate the propagation of all light rays moving in radial direction.
So we solve:

ds2 =(1− r2)dt̄2 + 2r2dt̄dr− (1 + r2)dr2. (65)

Deviding by dr2 yields a quadratic equation for dt̄
dr ≡ λ:

(1− r2)λ2 + 2r2λ− (1− r2) = 0. (66)

So there are two solutions:

λ =
−2r2 ±

√
4r4 − 4 · (1− r2) · −(1 + r2)

2(1− r2)
, (67)

=
−2r2 ±

√
4

2(1− r2)
, (68)

=
−r2 ± 1

1− r2
. (69)

This means the solutions are given by:

λ+ = 1, (70)

λ− = −1 + r2

1− r2
. (71)

The result is that the outgoing angle is precisely 45 degrees. For the negative solution we
have a different result that implies that for small r we have an angle of minus 45 degrees.
However we not that as r → 1, λ− diverges and for r > 1 it even becomes positive, ingoing
and outgoing light rays start to travel in the same direction. This means once a particle
has crossed the horizon at r = 1 it has to stay within the light cone preventing it from
returning to values r < 1.
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3. Expanding flat universe

Consider the following metric describing an expanding flat Universe,

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2). (72)

(a) Compute the Christoffel symbols in terms of a(t).

(b) Derive the equations of motion for massive particles moving inertially in this spacetime

(c) Check that the orbits {x(t), y(t), z(t)} = constant, correspond to inertial motion.

From this point on, we focus on the specific case of an inflating Universe where,

a(t) = exp

(√
Λ

3
t

)
(73)

(d) A light ray is emitted from the point {t, x, y, z} = {t0 , 0, 0, 0} towards positive values of x.
What is the orbit that the light ray will follow?

(e) Find the maximum value of the coordinate x that the light ray described above can reach.

(f) Using the metric compute the physical spacelike distance along the slice t = t0 corresponding
to the coordinate distance in x that you found in e).

Solution:

(a) So we consider the following metric:

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2). (74)
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This gives a Lagrangian given by:

L =

√√√√−

[(
dt

dσ

)2

− a(t)2

((
dx

dσ

)2

+

(
dy

dσ

)2

+

(
dz

dσ

)2
)]

. (75)

This mean we obtain for t:

∂L
∂t

=
1

2L
∂

∂t

[
−

[(
dt

dσ

)2

− a(t)2

((
dx

dσ

)2

+

(
dy

dσ

)2

+

(
dz

dσ

)2
)]]

(76)

=
1

2L
2a(t)

∂a

∂t

((
dx

dσ

)2

+

(
dy

dσ

)2

+

(
dz

dσ

)2
)

(77)

= a(t)
∂a

∂t

((
dx

dτ

)2

+

(
dy

dτ

)2

+

(
dz

dτ

)2
)
, (78)

∂L
∂ṫ

=
1

2L
∂

∂ṫ

[
−

[(
dt

dσ

)2

− a(t)2

((
dx

dσ

)2

+

(
dy

dσ

)2

+

(
dz

dσ

)2
)]]

(79)

= − 1

2L
2
dt

dσ
(80)

= − dt

dτ
, (81)

where L = dτ
dσ .

This leads to the following Lagrange equation and means that the Christoffel symbols
become:

∂

∂τ

(
∂L
∂ṫ

)
− ∂L

∂t
= 0 (82)

∂

∂τ

(
− dt

dτ

)
− a(t)

∂a(t)

∂t

((
dx

dτ

)2

+

(
dy

dτ

)2

+

(
dz

dτ

)2
)

= 0 (83)

d2t

dτ2
+ a

∂a

∂t

((
dx

dτ

)2

+

(
dy

dτ

)2

+

(
dz

dτ

)2
)

= 0, (84)

Γt
xx = Γt

yy = Γt
zz = a

∂a

∂t
. (85)

Now let’s consider x or a cyclic perturbation of x, y, z:

∂L
∂x

= 0, (86)

∂L
∂ẋ

=
1

2L
∂

∂ẋ

[
−

[(
dt

dσ

)2

− a(t)2

((
dx

dσ

)2

+

(
dy

dσ

)2

+

(
dz

dσ

)2
)]]

(87)

=
1

2L
a(t)22

dx

dσ
(88)

= a(t)2
dx

dσ
. (89)
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The Lagrange equation can then be solved to obtain the Christoffel symbols,

d

dτ

(
dL
dẋ

)
− ∂L

∂x
= 0 (90)

d

dτ

(
a(t)2

dx

dτ

)
= 0 (91)

2a(t)
da(t)

dt

dt

dτ

dx

dτ
+ a(t)2

d2x

dτ2
= 0 (92)

d2x

dτ2
+

2

a(t)

∂a

∂t

dt

dτ

dx

dτ
. (93)

This implies that:

Γx
xt = Γy

yt = Γz
zt =

1

a

∂a

∂t
(94)

Mind the factor 2, due to symmetry.

(b) For a massive particle we know that:

1 = ṫ2 − a(t)2(ẋ2 + ẏ2 + ż2). (95)

From the previous subproblem (a) we know that:

2a2ẋ = k. (96)

Because of symmetry this means that we have:

ẋ =
k

2a2
, (97)

ẏ =
l

2a2
, (98)

ż =
m

2a2
, (99)

This means that the equation for a massive particle becomes:

1 = ṫ2 − 1

4a2
(
k2 + l2 +m2

)
. (100)

This can be rewritten as:

ṫ2 = 1 +
1

4a2
(
k2 + l2 +m2

)
. (101)

(c) If we have {x(t), y(t), z(t) } = constant, this means that:

ẋ =
∂x

∂τ
=

∂x

∂t

∂t

∂τ
= 0 · ∂t

∂τ
= 0. (102)

The same is valid for the cyclic permutable coordinates. so ẋ = ẏ = ż = 0. This gives that
the equations of motion give:

ẗ = ẍ = ÿ = z̈ = 0. (103)

So there is inertial motion.

(d) For now we assume:

a(t) = exp

(√
Λ

3
t

)
(104)
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A light ray so that means that gµν ẋ
µẋν = 0, this gives:

0 = dt2 − exp

(√
Λ

3
t

)
dx2, (105)

dt2 = exp

(√
Λ

3
t

)
dx2, (106)

dx = exp

(
−1

2

√
Λ

3
t

)
dt, (107)

x(t) = −
exp

(
−1

2

√
Λ

3
t

)
1

2

√
Λ

3

+ C. (108)

Now we want to do set boundary conditions: t = t0, x(t0) = 0, this means the constant
becomes:

C =

exp

(
−1

2

√
Λ

3
t0

)
1

2

√
Λ

3

. (109)

This means the equation for x(t) becomes:

x(t) =


exp

(
−1

2

√
Λ

3
t0

)
1

2

√
Λ

3

−
exp

(
−1

2

√
Λ

3
t

)
1

2

√
Λ

3

 , (110)

= 2

√
3

Λ

(
exp

(
−1

2

√
Λ

3
t0

)
− exp

(
−1

2

√
Λ

3
t

))
(111)

(e) For this we take t → ∞, which gives:

lim
t→∞

x(t) = 2

√
3

Λ
exp

(
−1

2

√
Λ

3
t0

)
(112)

(f) We take a slice in time, t = t0, this means that dt = 0, and the metric becomes:

ds2 = a2dx2, (113)

ds = adx, (114)

s = a(t0)xmax(t0), (115)

= exp

(√
Λ

3
t0

)
· 2
√

3

Λ
exp

(
−1

2

√
Λ

3
t0

)
, (116)

= 2

√
3

Λ
exp

(
1

2

√
Λ

3
t0

)
. (117)

4. General to Special Relativity
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Assuming a general coordinate transformation, the components of vector fields a and b transform
as follows:

a′α =
∂x′α

∂xβ
aβ , b′α =

∂xβ

∂x′α bβ , (118)

(a) Show that the components of a metric tensor transform under general coordinate transforma-
tions as:

g′αβ(x) =
∂xγ

∂x′α
∂xδ

∂x′β gγδ(x) (119)

(b) Show that the scalar product between two vector fields:

v(x) ·w(x) = gαβ(x)v
α(x)wβ(x) (120)

is invariant under the general coordinate transformations.

(c) Show that under a general coordinate transformation (x′α = (Λ−1)α βx
β), where Λ−1 is a

constant invertable matrix, the components of vector field b transform as:

b′α = Λβ
αbβ (121)

(d) Now consider a local inertial frame at a Point P where gαβ = ηαβ and the first derivative of gαβ
vanishes. Using eq. (119), show that the components of the Minkowski spacetime metric ηαβ
are invariant under general coordinate transformations (as defined in the previous subquestion).
In other words, show that the conditions for which η′αβ = ηαβ are given by:

(ΛT )αγ (Λ)
γ
β = 1

α
β where (ΛT )αβ ≡ ηαγηβδΛ

δ
γ (122)

Solution:

(a) The metric tensor components can be written as the product of 2 vectors:

g′αβ = a′αb
′
β (123)

Now substituting the expression for a general coordinate transformation gives:

g′αβ =
∂xγ

∂x′α aγ
∂xδ

∂x′β bδ (124)

=
∂xγ

∂x′α
∂xδ

∂x′β aγbδ (125)

=
∂xγ

∂x′α
∂xδ

∂x′β gγδ (126)

(b) Take the scalar product definition and fill in the transformation equations previously spec-
ified in the question.

v′(x) ·w′(x) = g′αβ(x)v
′α(x)w′β(x) (127)

=
∂xγ

∂x′α
∂xδ

∂x′β gγδ(x)
∂x′α

∂xν
aν

∂x′β

∂x′µ b
µ (128)

= δγν δ
δ
µgγδa

νbµ (129)

= gγδa
γbδ (130)

= a(x) · b(x) (131)

So yes, the scalar product between two vector fields in invariant under the general coordinate
transformations.
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(c) Start with the general coordinate transformation:

x′α = (Λ−1)α βx
β (132)

Then multiply both sides by Λδ
α.

Λδ
αx

′α = Λδ
α(Λ

−1)α βx
β (133)

= δδβx
β (134)

= xδ (135)

We can also write this as follows (to be consistent with the notation of the question.

xβ = Λβ
αx

′α ⇒ ∂xβ

∂x′α = Λβ
α (136)

We can substitute this in the transformation of a vector field to get the final solution:

b′α =
∂xβ

∂x′α bβ (137)

= Λβ
αbβ (138)

(d) We can rewrite eq. (119) using eq. (121), and set gαβ = ηαβ , which gives:

η′αβ = Λγ
αΛ

δ
βηγδ (139)

Then multiply this expression by ηϵα

δϵβ = ηϵαηγδΛ
γ
αΛ

δ
β (140)

Additionally, we know that:

ηαβ = η′αβ = a′αb
′
β (141)

= Λγ
αΛ

δ
βaγbδ (142)

= Λγ
αΛ

δ
βηγδ (143)

or equivalently, (ΛT )ϵδ = ηϵαηγδΛ
γ
αΛ

δ
β

Substituting this in eq. (140) gives

δϵβ = (ΛT )ϵ δΛ
δ
β = 1

ϵ
β (144)

QED

5. Einstein & Riemann

(a) Show that Einstein’s equations,

Rµν − 1

2
gµνR = 8πGTµν , (145)

can also be written as,

Rµν = 8πG

(
Tµν +

T

2−D
gµν

)
, (146)

in which D is the dimension of space time.
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(b) How many independent components does the Riemann tensor have in 2 dimensions?1

Solution:

(a)

Rµν − 1

2
gµνR = 8πGTµν , (147)

gµνRµν − 1

2
gµνgµνR = 8πGTµνg

µν , (148)

R− D

2
R = 8πGT, (149)

R

(
1− D

2

)
= 8πGT, (150)

R =
8πGT

1− D
2

, (151)

where D = gµνgµν .
Now substituting back into Einstein’s equations,

Rµν = 8πGTµν +
1

2
gµνR, (152)

= 8πGTµν +
1

2
gµν

8πGT

1− D
2

, (153)

= 8πG

(
Tµν +

T

2−D
gµν

)
. (154)

(b) This exercise is a common exercise which need to be fluent by the student. Best to approach
this problem is by writing all possibilities as counting in binary:
R1111 R1211 R2111 R2211

R1112 R1212 R2112 R2212

R1121 R1221 R2121 R2221

R1122 R1222 R2122 R2222

We know that the metric is antisymmetric in the first two indices and the last two indices,
this means that the following become zero:
R1111 R1211 R2111 R2211

R1112 R1212 R2112 R2212

R1121 R1221 R2121 R2221

R1122 R1222 R2122 R2222

These four remaining Riemann tensor components can therefore be related using the anti-
symmetric properties as:

R1212 = R2121 = −R1221 = −R2112 (155)

So this mean there is only 1 independent component. The number of independent compo-
nents can also be found using:

IC =
1

12
N2(N2 − 1) (156)

1Show explicitly that there are that amount of independent components.


