General Relativity 2025-2026: Assignment 1

posted at September 16, to be submitted on September 23

N.B. you can obtain a maximum of (200pt)

Problem 1: Indices (30pt)

a. Indicate in each of the following expressions whether the index α is a free index or a dummy index. (15pt)

$$a^{\alpha}b_{\alpha} = 1$$
, $a^{\alpha}b^{\beta}c_{\beta} = d^{\alpha}$, $a^{\alpha}b^{\beta} = d^{\alpha\beta}$. (1)

b. Indicate in which of the following expressions the Einstein summation convention is used. (15pt)

$$a^{\alpha}b_{\beta} = c^{\alpha}{}_{\beta}, \quad a^{\alpha}b_{\alpha} = 1, \quad c^{\alpha}{}_{\alpha} = 1.$$
 (2)

Problem 2: Scalar product (30pt)

a. Consider a spacetime with coordinates (t, x) and line element

$$ds^2 = -dt^2 + dtdx + dx^2. (3)$$

Write down the metric tensor components $g_{\alpha\beta}$ corresponding to this line element. (10pt)

b. Consider in this spacetime a vector

$$V^{\alpha} = \begin{pmatrix} z \\ 1 \end{pmatrix} \tag{4}$$

with z a real number. Calculate the scalar product $\vec{V} \cdot \vec{V}$. (10pt)

c. For which values of z is the vector \vec{V} spacelike, lightlike or timelike? (10pt)

Problem 3: Calculating Distances and Areas (20pt)

Consider a spacetime geometry with coordinates (t, r, θ, ϕ) and line element

$$ds^{2} = -(1 - Ar^{2})^{2} dt^{2} + (1 - Ar^{2})^{2} dr^{2} + r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2})$$
 (5)

for certain constant A.

- a. Calculate the proper distance along a radial line at constant t from the centre r = 0 to a coordinate radius r = R. (10pt)
- b. Calculate the area of a sphere of coordinate radius r = R. (10pt)

Problem 4: Local lightcones (60pt)

Consider a spacetime geometry with coordinates (t, x, y, z) and line element

$$ds^{2} = -dt^{2} + e^{2Ht}(dx^{2} + dy^{2} + dz^{2})$$
(6)

for constant H.

a. Determine the non-zero metric components and calculate its determinant. (10pt)

b. Calculate the light ray trajectories in this geometry and indicate them in a spacetime diagram. *Hint:* Assume fixed (y, z) coordinates and restrict to a two-dimensional (t, x). (20pt)

c. Show, by indicating a few local lightcones in the (t, x) spacetime diagram, that these lightcones become more narrow with increasing time. (10pt)

d. Find a coordinate transformation $t = t(\eta)$ such that

$$ds^{2} = \Omega^{2}(\eta) \left(-d\eta^{2} + dx^{2} + dy^{2} + dz^{2} \right)$$
 (7)

for some $\Omega(\eta)$. Also write down $\Omega(\eta)$ explicitly. (20pt)

Problem 5: Christoffel Symbols (60pt)

Consider a three-dimensional spacetime with coordinates $x^{\alpha}=(t,r,\phi)$ and line element:

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\phi^{2}.$$
 (8)

a. Show that the Lagrangian for the variational principle for geodesics $x^{\alpha}(\sigma)$ in this spacetime is given by (10pt)

$$L(\dot{t}, \dot{r}, \dot{\phi}, r) = \left[\left(1 - \frac{2M}{r} \right) \dot{t}^2 - \left(1 - \frac{2M}{r} \right)^{-1} \dot{r}^2 - r^2 \dot{\phi}^2 \right]^{1/2}$$
(9)

with $\dot{x}^{\alpha} = dx^{\alpha}/d\sigma$.

b. Vary the Lagrangian (9) with respect to the ϕ coordinate and show that the corresponding Euler-Lagrange equation of motion is given by (20pt)

$$\frac{d}{d\tau} \left[r^2 \frac{d\phi}{d\tau} \right] = 0. \tag{10}$$

c. Using this equation of motion read off the expressions for the Christoffel symbols $\Gamma^{\phi}_{\alpha\beta}$ for all α, β by comparing with the general expression of the geodesic equation (10pt)

$$\frac{d^2x^{\alpha}}{d\tau^2} + \Gamma^{\alpha}_{\beta\gamma} \frac{dx^{\beta}}{d\tau} \frac{dx^{\gamma}}{d\tau} = 0.$$
 (11)

d. Calculate the expression for the Christoffel symbols $\Gamma^{\phi}_{\alpha\beta}$ also 'by hand' using the formula

$$g_{\alpha\delta}\Gamma^{\delta}_{\beta\gamma} = \frac{1}{2} \left(\frac{\partial g_{\alpha\beta}}{\partial x^{\gamma}} + \frac{\partial g_{\alpha\gamma}}{\partial x^{\beta}} - \frac{\partial g_{\beta\gamma}}{\partial x^{\alpha}} \right)$$
(12)

and compare your result with the expression calculated in c. (20pt)