
PROBLEM 1 Giada Selva S1763440

a)ds = - (1-)dt + (1-dr + r (da + sinodb)
is the schwanchild metric in geometrical units.

The metric is independent of t ,
the killing vector is E" = (1 , 0 . 9,0).

there is also a manifest rotational simmetry ,
as the metric is independent of $

with tilling vector ma = (0,90 ,1) and
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the quantity I =&P is conserved along the geosedic.

it is the angular momentum per unit mass.
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PROBLEM 2
is the Friedmas equation , where
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9(t) = g(to) (a(to))" is the total energy densityo
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here K = -1
,
12 that is negative curvature

(open universe)

a) g(t)= (t where ao = a (to)

substituting in the Friedmans equation :
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2) -7-A is the Friedman equatione

Sa(m)
= 1A)(chn - 1) are the parametric equations for the negative

curvature models K= -1
, <1

t(m) = (A) (sinhm - n)

M is the conformal time : dt = a (t)dn
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① = Q - the Friedman equation is satisfied

d) this model expand from a Big Baug singularity at n to where

t = 0
,
a = 0

, f = c

the scale factor starts from Oat t = 0 (n=%) and increases with no bounds : it meavo

that there is not a big crunch , the universe expands forever.

This is what we expect for au open universe with negative curvature K=-z
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PROBLEM 3

the variational principle states that the world line of a free

particle extremizes the proper time :

a) AT = Set = Set &T where l = de is the lagrangiare
di
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2) the geodesic equations , from pointb) ore :

- and
-comparing with the general form of the geodesc equation :

=- ds = &T

2 = X

①T-r = y
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v = x
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d) the metric is invariant under translations Xex+ c and E= (1, 0)

is a killing vector
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Euler Lagrange equations for
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This is a conserved quantity and expresses the X-component of the

linear momentul.



e) the metric is : as = 1 dx dy
u. = 1

u . i = fMu9 = 1(x +y) = 1 + x+ y = y

the first geodesic equation found in point b is :

- =o=Y

integrating :

en i = 2 eny + A + lui = buy + A

and i = Ay

x + ij = y+z => AyP + y)
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integrating
2 = N =V- y
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and (x - xo)2 + yz = 1
Since y so this equation

Al represents semi-circles in the

upper half plane ,
centered

in (70 , 0) and radius r=
A


