PROBLEM 1

giada Selva S4763440

a)
$$dS^2 = -\left(1 - \frac{2M}{r}\right) dt^2 + \left(1 - \frac{2M}{r}\right)^{-1} dr^2 + r^2 \left(d\theta^2 + sin^2\theta d\phi^2\right)$$

is the Schwarchild metric in permetrical units.

The metric is independent of t, the Killing vector is $\mathcal{E}^{1} = (1,0,0,0)$.

thus is also a manifest xotational simmetry, as the metric is independent of ϕ ,

with Killing vector ma = (0,0,0,1) and

$$\frac{\partial \phi}{\partial \theta \partial \theta} = 0$$
 and $\frac{\partial \phi}{\partial r} = 0$

Euler-dapraupe eq:

$$-\frac{q\omega}{q}\left(\frac{3\left(\frac{q\omega}{q\phi}\right)}{3\Gamma}\right) + \frac{3\phi}{3\Gamma} = 0 \qquad -\frac{q\omega}{q}\left(\frac{3\left(\frac{2\omega}{q\phi}\right)}{3\Gamma}\right) = 0$$

aud

$$\frac{\partial l}{\partial (\frac{d\theta}{d\sigma})} = const$$

$$l = \left[-8a\beta \frac{dx^{2}}{d\sigma} \frac{dx^{\beta}}{d\sigma} \right]^{\frac{1}{2}}$$

$$\frac{\partial l}{\partial \left(\frac{d\phi}{d\sigma}\right)} = \frac{1}{2} \left(l^2\right)^{-\frac{1}{2}} \left(-\frac{\alpha}{3\beta} \frac{dx^{\beta}}{d\sigma}\right) = -\frac{1}{2l} \frac{\beta_{3\beta}}{2l} \frac{dx^{\beta}}{d\tau} \frac{dx}{d\tau} = const$$

$$\rightarrow g_{\alpha\beta} \eta^{\alpha} u^{\beta} = \eta \cdot u = const \rightarrow \eta \cdot u$$
 is compound

$$\mathcal{M} \cdot \mathcal{M} = \beta \phi \phi \frac{d\phi}{dx} = r^2 \sin^2 \theta \frac{d\phi}{dx} = r^2 \frac{d\phi}{dx}$$
 assuming $\theta(x) = \frac{\pi}{2}$

the quantity $\ell = r^2 \frac{d\theta}{dr}$ is conserved along the peopedic.

it is the augular momentum per unit man.

b)
$$\frac{M}{r^2} \left(\frac{dt}{dr}\right)^2 - r \left(\frac{d\phi}{dr}\right)^2 = 0$$

soubos & ent to notacupo ent or

circular orbit of radius R=4M

at
$$r = R$$
: $M\left(\frac{dt}{d\tau}\right)^2 - R^3 \left(\frac{d\phi}{d\tau}\right)^2$

$$R = 4M$$

$$\left(\frac{dt^2}{d\tau}\right)^2 - 64 M^2 \left(\frac{d\phi}{d\tau}\right)^2 = 0 \qquad \Rightarrow \frac{dt}{d\tau} = 8M \frac{d\phi}{d\tau}$$

$$\Delta t = 8M \oint d\phi = 8M \int d\phi = 16\pi M$$

$$\Delta t = 16\pi M$$

()
$$u \cdot u = -1$$
 and $\theta = \frac{\pi}{2}$

$$g_{tt} \left(\frac{dt}{d\tau}\right)^2 + g_{rr} \left(\frac{dr}{d\tau}\right)^2 + g_{\phi\phi} \left(\frac{d\phi}{d\tau}\right)^2 = -1$$

$$-\left(1-\frac{2M}{r}\right)\left(\frac{dt}{dr}\right)^{2}+\left(1-\frac{2M}{r}\right)^{-1}\left(\frac{dr}{dr}\right)^{2}+r^{2}\left(\frac{d\phi}{dr}\right)^{2}=1$$

on the peoderic r=4M=R, dr=0

$$-\left(1-\frac{2H}{4H}\right)\left(\frac{dt}{dt}\right)^{2}+16H^{2}\left(\frac{d\phi}{dt}\right)^{2}=-1$$

from point b):
$$\left(\frac{dt}{dx}\right)^2 = 64 \, \text{m}^2 \left(\frac{d\phi}{dx}\right)^2$$

$$-\frac{1}{2} \cdot 64 \, \text{m}^2 \left(\frac{d\phi}{dx}\right)^2 + 16 \, \text{M}^2 \left(\frac{d\phi}{dx}\right)^2 = -1$$

$$46 \text{ M}^2 \left(\frac{d\phi}{d\chi}\right)^2 = 1 \longrightarrow \frac{d\phi}{d\chi} = \frac{1}{4M}$$

$$\Delta \tau = \int d\tau = \int \frac{d\tau}{d\phi} d\phi = 4M \int d\phi = 8\pi M$$

$$\Delta \tau = \delta \pi M$$

$$\dot{a}^2 - \frac{8\pi \beta}{3} a^2 = 1$$

is the Friedman equation, where $g(t) = g(to) \left(\frac{a(to)}{a(t)}\right)^3 \text{ is the total energy density}$

$$g(t) = g(to) \left(\frac{a(to)}{a(t)} \right)^{2} \text{ is the total energy demo}$$

$$g(to) = \frac{3}{8\pi} H_{0}^{2} \Omega, H_{0} = \frac{\dot{a}(to)}{a(to)}$$

here K = -1, $\Omega < 1$ that is regative curvature (open universe)

a)
$$g(t) = \frac{3}{8\pi} Ho^2 \Omega \left(\frac{Q_0}{Q}\right)^3$$
 where $Q_0 = Q_0(t_0)$

substituting in the Friedmann equation:

$$\dot{\alpha}^{2} - \frac{8\pi}{3} \cdot \frac{3}{8\pi} \, No^{2} \, \Omega \, \alpha^{2} \, \frac{\alpha^{3}}{\alpha^{3}} = 1$$

$$\dot{\alpha}^{2} - No^{2} \, \Omega \, \frac{\alpha^{3}}{\alpha} = 1$$

let t = to and multiply with 1 ao

$$\left(\frac{\dot{\alpha}o}{\alpha o}\right)^2 - \mu o^2 \Omega \frac{\alpha o^3}{\alpha o^3} = \frac{4}{\alpha o^2}$$

 $\mu_0^2 - \mu_0^2 \Omega = \frac{1}{Q_0^2} \Rightarrow Q_0^2 \mu_0^2 (1 - \Omega) = 1$ with $\Omega < 1$

so we pet:

$$Q_0 = N_0^{-1} (1 - \Omega)^{-\frac{1}{2}}$$

from point a):

$$\hat{a}^{2} - \hat{a}^{3} \frac{1}{100} \frac{\Omega}{\Omega} = 1$$

$$\hat{a}^{2} - \hat{a}^{3} \frac{1}{100} \frac{\Omega}{\Omega} = 1$$

$$\hat{a}^{2} - \hat{a}^{3} \frac{1}{100} \frac{\Omega}{\Omega} = 1$$

and

$$\dot{a}^2 - \frac{A^1}{a} = 1$$
 \longrightarrow $\dot{a}^2 - 1 = \frac{A^2}{a}$

c)
$$a-1=\frac{A^2}{a}$$
 is the Friedman equation

$$\begin{cases} A(\eta) = \frac{1}{2} A^{2} \left(\cosh \eta - 1 \right) \\ t(\eta) = \frac{1}{2} A^{2} \left(\sinh \eta - \eta \right) \end{cases}$$

and the parametric equations for the negative curvature models K = -1, $\Omega < 1$

m is the conformal time: dt = a(t) dn

$$\dot{a} = \frac{da}{dt} = \frac{da/dn}{dt/dn} = \frac{\frac{1}{2}A^{2} \sinh n}{\frac{1}{2}A^{2} \left(\cosh n - 1\right)} = \frac{\sinh n}{\cosh n - 1}$$

$$\frac{(3)}{(3)} \dot{a}^{2} - 1 = \frac{\sin^{2} h \eta}{(\cos h \eta - 1)^{2}} = \frac{\sin^{2} h \eta - (\cosh \eta - 1)^{2}}{(\cos h \eta - 4)^{2}} = \frac{\sin^{2} h \eta}{(\cos h \eta - 4)^{2}}$$

$$= \frac{\sin^2 h n - \cos^2 h n + 2 \cos h n - 1}{(\cos h n - 1)^2} \qquad (\cos^2 h n - \sin^2 h n = 1)$$

$$= \frac{-1+2 \cos h \eta - 1}{(\cosh \eta - 1)^2} = \frac{2(\cosh \eta - 1)}{(\cosh \eta - 1)^2} = \frac{2}{\cosh \eta - 1}$$

$$\frac{A^2}{a} = \frac{A^2}{dt/d\eta} = \frac{A^2}{\frac{1}{2}A^2(\omega s \ln \eta - 1)} = \frac{2}{\cos \ln \eta - 1}$$

d) this model expand from a Big Bang singularity at $\eta = 0$ where t = 0, a = 0, $p = \infty$

the scale factor starts from 0 at t=0 ($\eta=0$) and increases with no bounds: it means that there is not a lap crunch, the universe expands forever.

This is what we expect for an open universe with negative curvature K=-1

a f

PROBLEM 3

the variational principle states that the world line of a free particle extremizes the proper time:

a)
$$\Delta \chi = \int d\chi = \int d\sigma \frac{d\chi}{d\sigma}$$
 where $l = \frac{d\chi}{d\sigma}$ is the lagrangian $l = \frac{d\chi}{d\sigma} = \frac{d\chi}{d\sigma} = \left[\beta_{d\beta}(\chi) \frac{d\chi^d}{d\sigma} \frac{d\chi^\beta}{d\sigma} \right]^{\frac{1}{2}}$

$$d\int_{-\infty}^{\infty} d\chi = \left[(\chi^2 + \chi^2) + \beta_{d\beta} \chi^d \chi^d \chi^d \right] = \left[(\chi^2 + \chi^2) + \beta_{d\beta} \chi^d \chi^d \chi^d \right]$$
($\chi^2 = \chi^2 + \chi^2 + \chi^2 = \chi^2 + \chi^2 + \chi^2 = \chi^2 + \chi^2 + \chi^2 = \chi^2 = \chi^2 + \chi^2 = \chi^2$

$$L = \left[y^{-2} \left(\frac{dx}{d\sigma} \right)^2 + y^2 \left(\frac{dy}{d\sigma} \right)^2 \right]^{\frac{1}{2}} = \left\{ \left[y^2 \left(\left(\frac{dx}{d\sigma} \right)^2 + \left(\frac{dy}{d\sigma} \right)^2 \right) \right] \right\}^{\frac{1}{2}}$$

$$\frac{\partial L}{\partial (\frac{\partial x}{\partial \sigma})} = \frac{1}{2} (L^2)^{-\frac{1}{2}} 2y^2 \frac{dx}{d\sigma}$$

$$\frac{d}{d\sigma} \left[\frac{1}{Ly^2} \frac{dx}{d\sigma} \right] = 0$$

$$\frac{\partial L}{\partial x} = 0$$

$$L = \frac{ds}{d\sigma} \rightarrow \frac{d}{d\sigma} \left[\frac{1}{y^2} \frac{d\sigma}{ds} \frac{dx}{d\sigma} \right] = 0 \quad \text{and} \quad \frac{d}{d\sigma} \left[\frac{1}{y^2} \frac{dx}{ds} \right] = 0$$

multiplying by
$$\frac{d\sigma}{ds}$$
; $\frac{d}{ds} \left[\frac{1}{y^2} \frac{d^2x}{ds} \right] = 0$
 $\frac{1}{y^2} \frac{d^2x}{ds^2} - \frac{2}{y^3} \frac{dy}{ds} \frac{dx}{ds} = 0$ $\Rightarrow x - \frac{2}{y} x y = 0$

$$\frac{\partial L}{\partial x} = 1 \left(\frac{\partial L}{\partial x} \right) + \frac{\partial L}{\partial x} = 0$$

$$\frac{\partial L}{\partial \left(\frac{\partial y}{\partial \sigma}\right)} = \frac{1}{2} \left(l^2\right)^{-\frac{1}{2}} y^{-2} 2 \frac{dy}{d\sigma} = \frac{1}{L}^{-2} y \frac{dy}{d\sigma}$$

$$\frac{\partial L}{\partial y} = \frac{1}{2} \left(L^2 \right)^{-\frac{1}{2}} \left(-2 \right) y^3 \left[\left(\frac{dx}{d\sigma} \right)^2 + \left(\frac{dy}{d\sigma} \right)^2 \right] = -\frac{1}{2} y^3 \left[\left(\frac{dx}{d\sigma} \right)^2 + \left(\frac{dy}{d\sigma} \right)^2 \right]$$

$$\frac{d}{d\sigma} \left(\frac{1}{Ly^2} \frac{dy}{d\sigma} \right) + \frac{1}{Ly^3} \left[\left(\frac{dx}{d\sigma} \right)^2 + \left(\frac{dy}{d\sigma} \right)^2 \right] = 0$$

$$L = \frac{ds}{d\sigma}$$

multiplying by do:

$$\frac{d}{ds} \left(\frac{1}{y^2} \frac{dy}{ds} \right) + \frac{1}{y^3} \left(\frac{dy}{ds} \right) \left[\left(\frac{dx}{dy} \right)^2 + \left(\frac{dy}{dy} \right)^2 \right] = 0$$

$$\frac{1}{y_1} \frac{d^2y}{ds^2} + \left(\frac{dy}{ds}\right)^2 \left(-\frac{2}{y_3}\right) + \frac{1}{y_3} \left[\left(\frac{dx}{ds}\right)^2 + \left(\frac{dy}{ds}\right)^2\right] = 0$$

$$\frac{d^2y}{ds^2} - \frac{2}{y} \left(\frac{dy}{ds}\right)^2 + \frac{1}{y} \left(\frac{dx}{ds}\right)^2 + \frac{1}{y} \left(\frac{dy}{ds}\right)^2 = 0$$

$$\frac{d^2y}{ds^2} - \frac{1}{y} \left(\frac{dy}{ds}\right)^2 + \frac{1}{y} \left(\frac{dx}{ds}\right)^2 + \frac{1}{y} \left(\frac{dy}{ds}\right)^2 = 0$$

$$y + \frac{1}{y} \dot{x}^2 - \frac{1}{y} \dot{y}^2 = 0$$

C) the peodesic equations, from point b) are:

$$\frac{d^2x}{ds^2} = \frac{1}{y} \frac{dx}{ds} \frac{dy}{ds} = 0 \quad \text{and} \quad \frac{d^2y}{ds^2} + \frac{1}{y} \left(\frac{dx}{ds}\right)^2 - \frac{1}{y} \left(\frac{dy}{ds}\right)^2 = 0$$

comparing with the peneral form of the peoplesic equation:

$$\frac{d^2x^{d}}{dx^{2}} = -\int_{BT}^{D} \frac{dx^{B}}{dx} \frac{dx^{B}}{dx} dx^{B}$$

$$dS = dT$$

(1)
$$\frac{d^2x}{dt^2} = \frac{2}{y} \frac{dx}{dt} \frac{dy}{dt} \frac{d^2x}{dt^2} = \frac{1}{y} \frac{d^$$

$$\frac{\partial^2 y}{\partial s^2} = -\frac{1}{3} \frac{\partial x}{\partial s} \frac{\partial x}{\partial s} + \frac{1}{3} \frac{\partial y}{\partial s} \frac{\partial y}{\partial s}$$

$$\frac{d=y}{\delta=x} \rightarrow \begin{bmatrix} y & = \frac{1}{y} \\ xx & = \frac{1}{y} \end{bmatrix}$$

$$d = y$$

$$\beta = y$$

$$\delta = y$$

d) the metric is invariant under translations $x \to x + c$ and $\mathcal{E}^{d} = (1,0)$

is a killing vector

$$\frac{9x}{9bqg} = 0$$
 and $\frac{9x}{9f} = 0$

Euler Lagrange equations for x

$$-\frac{qa}{d} \left(\frac{3(\frac{qa}{qx})}{3r} \right) + \frac{3x}{3r} = 0$$

$$\frac{d}{d\sigma}\left(\frac{\partial L}{\partial \left(\frac{dx}{d\sigma}\right)}\right) = 0 \quad \text{and} \quad \frac{\partial L}{\partial \left(\frac{dx}{d\sigma}\right)} = correct.$$

$$\frac{\partial L}{\partial \left(\frac{\partial x}{\partial \sigma}\right)} = \frac{1}{2} \left(l^{2}\right)^{\frac{1}{2}} \left(\rho_{1\beta} \frac{\partial x^{\beta}}{\partial \sigma}\right) = \frac{1}{2L} \rho_{1\beta} \frac{\partial x^{\beta}}{\partial t} \frac{\partial t}{\partial \sigma}$$

$$= \frac{1}{2} \theta_{1\beta} \frac{dx^{\beta}}{d\tau} = compt$$

this is a comerved quantity and expresses the x-component of the

linear momentur.

$$\vec{u} \cdot \vec{u} = \rho_{\alpha\beta} u^{\alpha} u^{\beta} = \frac{1}{y_1} (\dot{x}^2 + \dot{y}^2) = 1 \rightarrow \dot{x}^2 + \dot{y}^2 = y^2$$

the first peodesic equation found in point b is:

$$\ddot{x} - 2 \dot{x} \dot{y} = 0 \Rightarrow \frac{\ddot{x}}{\dot{x}} = 2 \frac{\dot{y}}{\dot{y}}$$

: gritargetri

$$\dot{\chi}^2 + \dot{y}^2 = y^2 = A^2 y^4 + \dot{y}^2 = y^2$$

$$\frac{dx}{dy} = \frac{dx}{ds}, \frac{ds}{dy} = \frac{\dot{x}}{\dot{y}} = \pm \frac{A\dot{y}^2}{4\sqrt{1-A^2\dot{y}^2}} = \pm \frac{A\dot{y}}{A\sqrt{\frac{1}{A^2}-\dot{y}^2}}$$

$$dx = \frac{1}{\sqrt{\frac{1}{A}} - y^2} dy$$

$$\int \frac{y}{\sqrt{r^2 - y^2}} = -\sqrt{r^2 - y^2}$$
here $r^2 = \frac{1}{A^2}$

integrating

$$\chi = \chi_0 = \sqrt{\frac{1}{\theta^2} - y^2}$$

and
$$(x-x_0)^2 + y^2 = 1$$

represents semi-arcles in the represent semi-arcles in the dependent place, centered in (8,0x) and radius r= \frac{1}{4}