Example Exam

WMPH009-05

15:00 - 17:00 Friday November 1, 2024 Exam Hall 4 V3 - X21 Blauwborgje 4

Indicate at the first page clearly your name and student number. You can obtain a maximum of (50 + 40 = 90 pt)

Question 1: Cosmology (50 pt)

Consider the Friedman equation (we take c = G = 1)

$$\dot{a}^2 - \frac{8\pi\rho}{3}a^2 = 1\,, (1)$$

where a=a(t) is the scale factor, $\dot{a}=\frac{da}{dt}$ and $\rho=\rho(t)$ is the total energy density.

For a universe with pressureless matter the total energy density $\rho = \rho(t)$ is given by

$$\rho = \rho_0 \left(\frac{a_0}{a}\right)^3,\tag{2}$$

where $\rho_0 = \rho(t_0)$, $a_0 = a(t_0)$ and t_0 is the present-day time

(1.1) Give the definition of $\rho_{\rm crit}$ and show that it is given by the expression (10 pt)

$$\rho_{\text{crit}} = \frac{3H_0^2}{8\pi} \quad \text{with} \quad H_0 = \frac{\dot{a}(t_0)}{a(t_0)}.$$
(3)

(1.2) Show that the Friedman equation, taken at $t=t_0$, can be used to solve for $a_0=a(t_0)$ in terms of H_0 and $\Omega\equiv\rho_0/\rho_{\rm crit}$ as follows: (10 pt)

$$a_0 = (H_0)^{-1} (1 - \Omega)^{-1/2}$$
. (4)

(1.3) Use the result (4) to show that the Friedman equation, for general t, can be written as (10 pt)

$$\dot{a}^2 - 1 = \frac{A^2}{a}$$
 with $A^2 = \frac{\Omega}{H_0(1-\Omega)^{3/2}}$. (5)

(1.4) Show that equation (5) is solved by (10 pt)

$$a(\eta) = \frac{1}{2}A^2(\cosh \eta - 1),$$
 $t(\eta) = \frac{1}{2}A^2(\sinh \eta - \eta)$ (6)

in terms of a parameter η .

(1.5) Explain whether the solution (6) describes a flat, open or closed universe that starts with a Big Bang at t = 0. (10 pt)

Question 2: From General Relativity to Special Relativity (40 pt)

Under a general coordinate transformation $x'^{\alpha} = x'^{\alpha}(x^{\beta})$ the components a^{α} of a vector field **a** and the components b_{α} of a vector field **b** transform as

$$a^{\prime\alpha} = \frac{\partial x^{\prime\alpha}}{\partial x^{\beta}} a^{\beta}, \qquad b_{\alpha}^{\prime} = \frac{\partial x^{\beta}}{\partial x^{\prime\alpha}} b_{\beta}.$$
 (7)

(2.1) Show that the metric tensor transforms under general coordinate transformations as

$$g'_{\alpha\beta}(x) = \frac{\partial x^{\gamma}}{\partial x'^{\alpha}} \frac{\partial x^{\delta}}{\partial x'^{\beta}} g_{\gamma\delta}(x)$$
 (8)

by requiring that this tensor transforms in the same way as the product of two vectors with a lower index. (10 pt)

(2.2) In general relativity the scalar product between two vector fields $\mathbf{v}(\mathbf{x})$ and $\mathbf{w}(\mathbf{x})$ is defined by

$$\mathbf{v}(x) \cdot \mathbf{w}(x) = g_{\alpha\beta}(x)v^{\alpha}(x)w^{\beta}(x), \qquad (9)$$

where $g_{\alpha\beta}$ is the spacetime metric. Show that the scalar product (9) is invariant under the general coordinate transformations given in (7) and (8). (10 pt)

(2.3) Show that under a general coordinate transformation $x'^{\alpha} = (\Lambda^{-1})^{\alpha}{}_{\beta}x^{\beta}$, with Λ^{-1} a constant invertable matrix (with inverse given by Λ), the components b_{α} of a vector field **b** transform as (10 pt)

$$b'_{\alpha} = \Lambda^{\beta}{}_{\alpha} b_{\beta} \,. \tag{10}$$

(2.4) We consider a local inertial frame at a point P where the metric $g_{\alpha\beta}$ at P is the Minkowski spacetime metric $g_{\alpha\beta} = \eta_{\alpha\beta}$ and where the first derivative

of the metric $g_{\alpha\beta}$ at P vanishes. Using eq. (8), show that the condition for which the Minkowski spacetime metric is invariant under the general coordinate transformations defined by the matrix $\Lambda^{\alpha}{}_{\beta}$ given in (2.3), i.e. the condition for which $\eta'_{\alpha\beta} = \eta_{\alpha\beta}$, is given by the equations

$$(\Lambda^T)^{\alpha}_{\ \gamma} (\Lambda)^{\gamma}_{\ \beta} = \mathbb{I}^{\alpha}_{\ \beta} \quad \text{with} \quad (\Lambda^T)^{\alpha}_{\ \beta} \equiv \eta^{\alpha\gamma} \eta_{\beta\delta} \Lambda^{\delta}_{\ \gamma} \,.$$
 (11)

How are these special general coordinate transformations called? (10 pt)